Beslissingen, spelletjes en logica

Het nemen van een beslissing onder onzekerheid vereist een rationeel omgaan met kansen.Afgelopen donderdag tot zaterdag werd er aan de Universiteit van Maastricht een congres gehouden: Decisions, Games & Logic (DGL). Het was al de vijfde keer dat deze bijeenkomst over beslis- en speltheorie en logica georganiseerd werd. Voor mij was het tweede keer, want vorig jaar in Parijs was ik er ook bij. Volgend jaar is de afspraak in München.

Het doel van deze interdisciplinaire workshop is het bij elkaar brengen van mensen die met verwante onderzoeksvragen bezig zijn, maar die toch zelden met elkaars werk in contact komen, omdat ze aan verschillende faculteiten verbonden zijn. Beslis- en speltheorie wordt typisch onderzocht binnen de economie en sociale wetenschappen. Logica kan bij het departement wiskunde horen of bij de faculteit filosofie; soms hebben beide een logica-afdeling en werken ze niet samen. De onderwerpen die op de agenda stonden zijn nauw verwant met kansrekening en ik heb dan ook veel interessante presentaties gezien.

Om elkaar beter te leren begrijpen, waren de voormiddagen voorbehouden voor telkens een mini-cursus over één van de drie vakgebieden.

Drie spelers en een aantal financiële interacties.Op donderdag gaf Andrés Perea van de Universiteit Maastricht een inleiding over speltheorie. Speltheorie gaat over situaties waarin er twee of meer spelers een beslissing moeten nemen, wetende dat de uitkomst niet enkel van hun eigen beslissing afhangt, maar ook van die van de andere spelers. (Als je de film “A beautiful mind” hebt gezien, dan weet je wellicht dat John Nash de Nobelprijs heeft gekregen voor zijn bijdragen op het gebied van speltheorie.) Elke speler probeert te redeneren over hoe de andere spelers zullen redeneren, inclusief over hoe zij redeneren over hemzelf, en zo verder… Je zou verwachten dat je al snel een onontwarbaar kluwen hebt, maar Andrés Perea wist het ons helder uit te leggen. Hij heeft net een boek geschreven over het onderwerp van epistemische speltheorie en slaagde er wonderwel in om ons de rode raad niet te doen verliezen.

Op vrijdag gaf Paul Égré van het Institut Nicod in Parijs een mini-cursus over beslissingen. Paul Égré heeft recent vooral gewerkt over vaagheid. Hij had het dan ook over hoe we beslissen bij randgevallen van vage begrippen (zoals ‘groot’ en ‘klein’). De klassieke logica werkt enkel voor scherpe begrippen, zoals “minstens 170 cm lang”, en niet voor vage uitdrukkingen, zoals “klein, maar groot voor een jockey”. Paul Égré legde ons uit hoe je de klassieke logica kunt aanpassen of een alternatieve logica kunt opstellen zodat ze ook op vage woorden toegepast kan worden. In de klassieke logica is iets waar of niet-waar, nooit beide en evenmin geen van beide. Voor een logica voor vaagheid zou je kunnen overwegen dat iets wél waar en niet-waar kan zijn, of geen beide. Ook kun je een derde waarheidswaarde introduceren (‘half waar’), of misschien wel veel meer nieuwe waarheidswaarden introduceren (fuzzy logic). Al deze suggesties moeten natuurlijk in detail worden uitgewerkt en er bestaan interessante verbanden tussen de verschillende logica’s. Van al deze aspecten en meer kregen we een degelijk overzicht.

Op zaterdag was Joseph (Joe) Halpern van de Amerikaanse Cornell University aan de beurt. De verwachtingen waren hooggespannen, want alle aanwezigen kenden zijn werk over logica en redeneren over kennis en onzekerheid: je mag gerust van een legende spreken. Geen computerpresentatie deze keer, maar een oerdegelijke uiteenzetting aan bord. Het begon heel elementair met het onderscheid tussen syntax en semantiek. Syntax is enkel de symbolische notatie zonder betekenis. “Chicken scratches” noemt Joseph Halpern dat; betekenisloze hanenpoten, zeg maar. Semantiek gaat over de betekenis die we toeschrijven aan de symbolen. Klassieke logica kan uitdrukken wat waar is en wat niet. Met behulp van modale logica kun je ook beschrijven wat iemand gelooft, wat iemand zou moeten doen, of hoe zaken veranderen in de tijd.

In de inleiding van Halpern ging het over Kripke semantiek, waarmee je kunt modelleren wat verschillende mensen wel en niet weten. Op dit punt komt de logica dicht bij speltheorie, waar het ook gaat om mensen die over gedeeltelijke informatie beschikken. Logica neemt echter een andere afslag en onderzoekt (onder meer) hoe je het beste kunt modelleren dat iemand iets (niet) weet. Dit wordt voorgesteld als een binaire relatie tussen toestanden (hoe de wereld is): het bestaan van zo’n relatie tussen twee mogelijke toestanden kun je interpreteren als dat de persoon in kwestie deze mogelijke toestanden niet kan onderscheiden. Stel de uitspraak “Het regent nu in Sjanghai” voor door het symbool p. Dan staat niet-p voor de uitspraak “Het regent nu niet in Sjanghai”. Maar ik weet helemaal niet of het nu regent in Shanghai of niet! Dit kun je voorstellen door twee mogelijke toestanden, p en niet-p, verbonden door een lijn met mijn naam erbij: die geeft aan dat ik deze toestanden niet van elkaar kan onderscheiden. Deze relatie kan verschillende wiskundige eigenschappen hebben (zo kan ze symmetrisch zijn, reflexief, transitief, of combinaties van deze). Dit wordt gemodelleerd door axioma’s toe te voegen aan de logica en de resulterende eigenschappen daarvan te onderzoeken. Ik was toch al van plan om iets meer van modale logica te leren deze zomer, dus deze inleiding kwam op een ideaal moment!

(Wordt vervolgd: volgende keer een korte samenvatting van mijn eigen praatje en een inspirerend cafégesprek.)

Gelijkaardige berichten:

Facebooktwitterredditpinteresttumblrmail

3 Reacties

  1. Pingback: Rationaliteit in laagjes » Sylvia's blog

  2. Pingback: Het beste van 2011 » Sylvia's blog

  3. Pingback: Doe mee aan een filosofie-experiment! » Sylvia's blog

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

70 − 67 =