Waterkans of kansloos?

Dit sterrenschip wordt aangedreven door een motor die op onwaarschijnlijkheid draait, in Douglas Adams' sciencefiction reeks 'The Hitchhikers guide to the galaxy'.In mijn exemplaar van “The Hitchhiker’s Guide to the Galaxy” van Douglas Adams zit er een treinticket naar Denemarken  uit 2003: ik kocht dit dikke boek toen ik voor de zomerschool ‘Hairy interfaces and stringy molecules’ in Odense was. Hoe onwaarschijnlijk dit misschien ook klinkt, in “The Hitchhiker’s Guide to the Galaxy” (of “Het transgalactisch liftershandboek”) gebeuren er heel wat zaken die nog veel onwaarschijnlijker zijn. Een potvis en een pot petunia’s die uit het niets ontstaan op enkele kilometers hoogte boven een planeet, bijvoorbeeld. In theorie zou zoiets spontaan kunnen gebeuren, maar het is enorm onwaarschijnlijk; in de praktijk kan zoiets haast geen toeval zijn. In het verhaal worden deze onwaarschijnlijke gebeurtenissen uitgelokt door een sterrenschip dat als motor een improbability drive gebruikt. Onwaarschijnlijkheid als aandrijving gebruiken kan enkel in sciencefiction en levert dit soort leuke nonsens op:

De kans dat dit gebeurt is erg klein!“Waterkans” is een mooi Vlaams woord voor een uiterst kleine kans. Of ze er in Nederland een even mooi synoniem voor hebben weet ik niet, maar in het Engels spreken ze van “a snowball’s chance in hell“: zoveel kans als een sneeuwbal in de hel – niet veel dus. Kansloos wil echter zeggen dat de mogelijkheid helemaal onbestaande is: er is dan zelfs geen waterkansje.

De klassieke kansrekening is gebaseerd op gewone reële getallen in het interval van nul tot één. Wanneer je daarmee een proces wil beschrijven waarbij er oneindig veel mogelijke uitkomsten zijn, kan het gebeuren dat je noodgedwongen kans nul moet toekennen aan sommige van die uitkomsten, terwijl deze toch kunnen gebeuren. Deze waterkansjes zijn daarmee niet te onderscheiden van volstrekt kansloze, onmogelijke uitkomsten. Dit probleem kun je oplossen door de kansfunctie waarden te laten aannemen in het interval van nul tot één van de hyperreële getallen, in plaats van het nul-één interval van de reële getallen. Elke mogelijke uitkomst heeft dan een kans verschillend van nul (dit kan een infinitesimaal zijn) en is dus duidelijk te onderscheiden van een onmogelijke gebeurtenis, die wel kans nul krijgt toegekend.

Het idee is eenvoudig, maar de wiskundige finesses zijn nog best ingewikkeld. Vandaar dat ik er samen met twee collega’s een artikel over heb geschreven. Professor Vieri Benci (Universiteit van Pisa, Italië) is een wiskundige die gespecialiseerd is in niet-standaard analyse, maar hij is ook geïnteresseerd in filosofie. Professor Leon Horsten (Universiteit van Bristol, UK) is een logicus die gespecialiseerd is in wetenschapsfilosofie, maar ook veel over  de grondslagen van de wiskunde kent.

De afkorting van 'Non-Archimedean Probability' is NAP. Na al dat nadenken over infinitesimale kansen hebben we toch wel een dutje verdiend?De titel van ons artikel is “Non-Archimedean Probability” of “niet-Archimedische waarschijnlijkheid”. De reële getallen zijn Archimedisch, hetgeen betekent dat er geen infinitesimalen in voorkomen. Door middel van de techniek van Robinson kunnen we de reële getallen uitbreiden tot de hyperreële getallen, waarin er wel oneindig grote getallen en oneindig kleine getallen (infinitesimalen) bestaan; deze hyperreële getallen zijn dus niet-Archimedisch.

Oneindig grote verzamelingen worden meestal beschreven met de kardinaalgetallen van Cantor. De grootte van de verzameling natuurlijke getallen wordt bijvoorbeeld aleph-nul genoemd. Elke oneindige deelverzameling van de natuurlijke getallen, bijvoorbeeld de verzameling van even getallen, heeft ook aleph-nul als kardinaliteit. Als je zou willen zeggen dat de verzameling even getallen maar half zo groot is die van alle natuurlijke getallen, kun je dit niet doen in termen van kardinaliteit. Vieri Benci heeft een manier ontwikkeld om aan oneindig grote verzamelingen een maat te koppelen die wel zo werkt dat een strikte deelverzameling een strikt kleinere maat krijgt toegewezen. Dit is dan niet de kardinaliteit maar de “numerositeit” (numerosity) van de verzameling. Kardinaliteit en numerositeit zijn twee verschillende manieren van tellen die voor eindige verzamelingen hetzelfde antwoord opleveren, maar die voor oneindige verzamelingen een verschillend resultaat geven. Onze kansmaat werkt als een soort genormeerde numerositeitsfunctie.

Om te laten zien hoe onze nieuwe theorie werkt, hebben we haar ook toegepast: in ons artikel we bespreken onder meer een eerlijke loterij op de natuurlijk getallen en een oneindig lange rij worpen met een eerlijke munt. In beide gevallen is het zeer onwaarschijnlijk om de uitkomst precies te voorspellen, maar niet strikt onmogelijk. Vandaar dat we er een infinitesimale kans aan koppelen: een kans die oneindig klein is, maar niet nul. Met deze methode is het mogelijk om deze zeer kleine kansen met elkaar te vergelijken. Binnen de klassieke kansrekening zijn de kans om een loterij te winnen op de natuurlijke loterij en de kans om de uitkomst van een oneindige reeks muntworpen te voorspellen beide nul. Met onze niet-Archimedische kansrekening zijn de kansen niet nul en is het mogelijk om aan te tonen dat de tweede kans (met de muntworpen) nog veel kleiner is dan de eerste (bij de oneindige loterij).

Op arXiv.org verschijnen preprints van wetenschappelijke artikelen.Sinds kort staat ons nieuwe artikel over kansrekening en infinitesimalen online. Het staat op arXiv.org, een website waar artikels over wiskunde, fysica en andere wetenschappen geplaatst kunnen worden vóór ze in een wetenschappelijk tijdschrift verschijnen (zogenaamde preprints). Bij zo’n tijdschrift kijken ze niet enkel na of het artikel bij hun onderwerp en standaarden past, maar wordt ook het principe van ‘peer review‘ toegepast: ze sturen het nieuwe artikel naar één of meerdere experts op dit gebied, dus eigenlijk collega’s (peers) van de auteurs van het artikel. Deze bekijken de inhoud kritisch en geven op anonieme wijze commentaar: ze moeten argumenten geven waarom het artikel al dan niet geschikt is voor publicatie. In sommige gevallen leiden hun suggesties tot grote verbeteringen in het werk.

Dit alles betekent dat er geen garantie is dat de artikels die je op arXiv aantreft ooit geplaatst zullen worden in een wetenschappelijk tijdschrift. Het is best mogelijk dat er iets schort aan het niveau van sommige artikels of dat er fouten in staan. Natuurlijk is het wel leuk om er op zoek te gaan naar nieuwe ideeën: het is net zo goed mogelijk dat je één van de eersten bent die hier de laatste nieuwe doorbraak leest. Ons artikel zal hopelijk binnenkort aanvaard worden in een regulier tijdschrift, maar tot die tijd kunnen collega’s en andere geïnteresseerden het hier alvast downloaden.

Intussen zijn we met dezelfde drie mensen aan een volgend artikel aan het werken: daarin willen we onze wiskundige theorie uitleggen op een manier die ook voor filosofen toegankelijk is. Het helpt dat we een interdisciplinair team vormen. Zelf probeer ik een bruggenbouwer te zijn tussen de verschillende domeinen (wiskunde en filosofie). Een bescheiden rol misschien, maar mijn ambitie is groot. Het is immers mijn bedoeling om de grondslagen van de kansrekening fundamenteel te veranderen – niet meer of niet minder. Ons team is daar precies geknipt voor; we zijn dus niet kansloos.

Gelijkaardige berichten:

Facebooktwittergoogle_plusredditpinteresttumblrmail

16 Reacties

  1. Pingback: Fysica van de staatsschuld » Sylvia's blog

  2. Pingback: De fysica van hemelsblauwe ogen » Sylvia's blog

  3. Pingback: Toeval en noodlot van Twin Peaks tot Pisa » Sylvia's blog

  4. Pingback: Colakansjes » Sylvia's blog

  5. Pingback: Verslag München – deel 2 » Sylvia's blog

  6. Pingback: Vrijdag lezing over “Waterkansjes” » Sylvia's blog

  7. Pingback: Vaarwel juli, welkom augustus (met regenbogen) » Sylvia's blog

  8. Pingback: Nog een nieuwe publicatie » Sylvia's blog

  9. Pingback: Verliefd op een probleem: de oneindige loterij » Sylvia's blog

  10. Pingback: In pyjama naar het labo » Sylvia's blog

  11. Pingback: Koordeprobleem » Sylvia's blog

  12. Jos Groot

    Een leuk stukje. Je schrijft: “In theorie zou zoiets spontaan kunnen gebeuren, maar het is enorm onwaarschijnlijk.” Inderdaad de quantummechanica staat alles toe, maar het meeste is zeer onwaarschijnlijk. Ooit vroeg ik me af waarom we dan zo weinig zeer onwaarschijnlijke dingen, wonderen zien. Het mag dan zo zijn dat de waarschijnlijkheid daarvan zeer klein is, maar er zijn er wel heel veel van. En hoeveel is de som van heel veel hele kleine kansen? Mijn oplossing is dat de quantummechanica inderdaad zeer veel toelaat, maar wij zien niet zoveel wonderen omdat we gewend zijn geraakt aan onze wereld, die ontspruit aan de quantummechanica. We verkeren in een dusdanig evenwicht met de wereld dat we niet van de ene verbazing in de andere vallen. Kinderen hebben minder tijd gehad om te wennen en verbazen zich daarom nog meer. En soms zijn er wetenschapper die opmerkelijke zaken ontdekken, zoals de gevolgen van verstrengeling.

    Reageren
    1. Sylvia Wenmackers (Auteur bericht)

      “We verkeren in een dusdanig evenwicht met de wereld dat we niet van de ene verbazing in de andere vallen.” Dat vind ik een zeer terechte opmerking. Bovendien denk ik dat kinderen, filosofen, wetenschappers en kunstenaars met elkaar gemeen hebben dat ze er soms in slagen deze gewenning te ontspringen en zich te verwonderen. En soms een paar omstaanders over hun schouder mee laten kijken.

      Reageren
  13. Pingback: Vragen van Daan – deel 1: over oneindigheid » Sylvia's blog

  14. Pingback: Vraag van Mark: over pi en infinitesimale kansen » Sylvia's blog

  15. Pingback: Vragen van Daan – deel 1: over oneindigheid › Material Girl

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

29 − = 24