De Columbia Universiteit ligt in New York, vlakbij Central Park. Hier werd er de voorbije twee dagen een congres gehouden met als naam Progic – een samentrekking van “probability” en “logic”. Deze samenkomst over de raakvlakken tussen waarschijnlijkheid en logica wordt om de twee jaar georganiseerd; volgende keer is het iets dichter bij huis: in München.
Elke editie van Progic heeft een specifiek thema; deze editie eerde het werk van Haim Gaifman, professor emiritus aan de Columbia Universiteit. Hij gaf zelf de laatste lezing van de bijeenkomst, waarin hij de diverse thema’s overliep waaraan hij in de loop der jaren heeft gewerkt, zoals het onderscheid en de overeenkomsten tussen objectieve en subjectieve waarschijnlijkheid. Hij besprak ook een aantal probabilistische puzzels. Een leuk voorbeeld dat hij gebruikte: “Alice schoot een pijl af. De pijlpunt landde in het midden van deze cirkel.” Dan volgde een tekening van een cirkel met precies in het midden inderdaad een pijl. De vraag is: wat is de kans dat dit gebeurde? Het antwoord is: dat hangt ervan af! Je weet immers niet of eerst de cirkel getekend werd en Alice dan moest schieten, of dat de cirkel achteraf getekend is, bijvoorbeeld om de landingsplaats aan te duiden. Dit lijkt misschien een flauw grapje, maar er zijn meer complexe situaties waar precies dit soort onduidelijkheid ervoor zorgt dat verschillende mensen tot verschillende kansbepalingen komen.
Om professor Gaifman te eren, werden er gerenommeerde sprekers uitgenodigd: zaterdag waren er lezingen van Dana Scott en Rohit Parikh (wie ik recent in Maastricht ontmoette) en zondag van Jeff Paris. Oorspronkelijk was voorzien dat ook Horacio Arló Costa een lezing zou geven op Progic, maar hij is twee maand geleden onverwacht overleden. Daarom was er zaterdag na de gewone lezingen een herdenkingssessie, waarbij bevriende collega’s herinneringen aan hem uitwisselden. Een doctoraatsstudent van Horacio Arló Costa presenteerde gezamenlijk werk, zodat zijn ideeën toch vertegenwoordigd waren op Progic.
Naast de uitgenodigde sprekers waren er ook een aantal ingezonden bijdragen. Mijn eigen bijdrage (waarvan de slides hier staan) ging over de loterijparadox. In mijn proefschrift heb ik een analyse van deze paradox voorgesteld in termen van “relatieve analyse” – een vorm van niet-standaard analyse ontwikkeld door Karel Hrbacek. Het formalisme is gebaseerd op het idee dat er op een gegeven ogenblik slechts eindig veel reële getallen een unieke naam hebben gekregen; naar de rest kun je enkel op een indirecte manier verwijzen. (Zo is “een getal groter dan een miljard” een indirecte verwijzing, waarvan “een triljard” een uniek benoemd voorbeeld is.) De getallen die zo groot zijn dat ze geen unieke naam hebben, worden ultragrote getallen genoemd; ze zijn relatief oneindig. Het inverse van een ultragroot getal is een ultraklein getal, of een relatieve infinitesimaal. Ik pas het idee van ultrakleine getallen toe op kansen: hiermee beschrijf ik kansen die – door een bepaalde persoon en in een bepaalde context – niet van nul worden onderscheiden, hoewel ze toch niet helemaal nul zijn.
Het punt met infinitesimalen is dat ze individueel verwaarloosbaar zijn, maar collectief heel substantieel kunnen zijn. Om dit uit te leggen gebruik ik volgende cartoon (naar een idee van Dr. Lachowska).

We moeten op de kleintjes letten.
Na afloop van elke lezing is er gelegenheid tot vragen stellen. Rohit Parikh stak zijn hand op, maar in plaats van met een vraag kwam hij met een verhaal voor de dag. “Jouw infinitesimalen doen me denken aan een sufi-verhaal”, zei hij en begon te vertellen:
Er was eens een verkoper van geroosterde walnoten. Een arme man kwam bij zijn kraam en genoot zichtbaar van de geur van de noten. ‘Heb je de walnoten geroken?’ vroeg de verkoper. ‘Ja,’ zei de man. ‘Dan moet je me daarvoor betalen,’ eiste de verkoper.
De man knikte instemmend, nam twee munten uit zijn zak en liet ze rinkelen tussen zijn gesloten handen. De verkoper strekte zijn arm uit om de munten in ontvangst te nemen. ‘Heb je de munten gehoord?’ vroeg de man. ‘Ja,’ zei de verkoper. ‘Goed, dan heb ik je betaald,’ zei de man.
Een kleine zoektocht op internet leverde een tiental varianten op van dit verhaal. Blijkbaar is het in alle werelddelen bekend. De aard van het eten varieert, maar het gaat altijd om geroosterd of gebakken voedsel. Het is ook niet altijd het geluid van munten dat als betaalmiddel wordt gebruikt, maar soms ook muziek (tromgeroffel).
Dit verhaal is wetenschappelijk te verantwoorden: het feit dat je eten kunt ruiken, wijst erop dat er moleculen van de etenswaren in je neus terecht zijn gekomen. De hoeveelheid moleculen die nodig is om iets te ruiken is relatief infinitesimaal ten op zichte van de hoeveelheid moleculen die je binnenkrijgt als je eet. Het geluid van geld echter brengt zelfs geen infinitesimaal van een cent in het laatje.
Pingback: Sylvia in Wonderland » Sylvia's blog
Pingback: Verslag München – deel 2 » Sylvia's blog
Pingback: Is eentje ooit geentje?* » Sylvia's blog
Pingback: Jaaroverzicht 2013 » Sylvia's blog