Het probleem van de oneindige loterij

Een loterij op de natuurlijke getallen heeft oneindig veel ballen. Toch zit er geen enkele bal bij waar 'oneindig' op staat.Eind vorige maand schreef ik over hoe een onderzoeksvraag mijn leven een andere wending gaf. Over wat dit probleem precies was, bleef ik eerder op vlakte. Daarom is deze post volledig gewijd aan het probleem van de oneindige loterij – de onderzoeksvraag die mijn leven veranderde.

[important]

De axioma’s van de klassieke kansrekening laten je niet toe om aan elk lot in een aftelbaar oneindige verzameling dezelfde kans toe te kennen.

[/important]

Dit vereist enige toelichting.

Het standaard voorbeeld van een aftelbaar oneindige verzameling is de verzameling van alle natuurlijke getallen, \mathbb{N}. Er zijn ook verzamelingen die overaftelbaar zijn en dus van een grotere orde oneindigheid: de verzameling van alle reële getallen, \mathbb{R}, is een voorbeeld van zo’n overaftelbaar oneindige verzameling.

Dan die axioma’s waarvan sprake is: de klassieke kansrekening berust op fundamentele aannames, uitgedrukt in vier axioma’s. De axioma’s heten: Normering, Positiviteit, Som en Continuïteit.

  1. Normering zegt dat de kans van de unie van alle loten samen precies één moet zijn, 100% dus.
  2. Positiveit zegt dat eender welke combinatie van loten een kans heeft die niet negatief kan zijn.
  3. Som zegt dat als twee verzamelingen loten geen loten gemeenschappelijk hebben, dat dan de kans van
  4. Continuïteit vertelt iets over het limietgedrag van oneindige deelverzamelingen van loten. Voor ons is van belang dat Som en Continuïteit samen aanleiding geven tot het principe van Aftelbare additiviteit.

Aftelbare additiviteit zegt dat de som van de kansen van aftelbaar veel loten apart gelijk moet zijn aan de kans van de unie van al deze loten samen. Omdat er in een aftelbaar oneindige loterij, in tegenstelling tot een overaftelbare, maar aftelbaar oneindig veel loten zijn, impliceert dit principe in dit geval dat de som van de kansen van alle loten apart gelijk moet zijn aan de kans van de verzameling van alle loten. En volgens het eerder genoemde axioma van de normering is die laatste kans gelijk aan één.

Stel nu dat je een gelijke kans wil toekennen aan alle loten in loterij op de natuurlijke getallen. Wat je ook probeert, je overtreedt altijd minstens één van de axioma’s:

  • Als je nul toekent aan ieder lot, sommeert de kans van alle loten samen tot nul. Dit is echter in strijd met de combinatie van Normering en Aftelbare additiviteit, die samen impliceren dat deze som gelijk moet zijn aan één.
  • Als je een kans groter dan nul toekent aan ieder lot, sommeert de kans van alle loten samen tot oneindig. (Anders gezegd: de som van deze kansen divergeert.) Dit is opnieuw in strijd met de combinatie van Normering en Aftelbare additiviteit, die vereisen dat deze som gelijk moet zijn aan één.

Het komt er dus op neer dat nul te klein is, terwijl iedere andere kans meteen te groot is. (Voor de wiskundigen onder jullie: het probleem komt er in feite op neer dat som en limiet niet commuteren.) Het lijkt of je iets tussen nul en de ‘eerstvolgende’ waarde zou willen hebben en dat als kans aan zo’n loterij hangen. Zoiets als één op oneindig, een infinitesimaal. De klassieke kansrekening werkt echter met reële getallen en er is niet zoiets als “het eerstvolgende getal groter dan nul”: tussen iedere twee reële getallen zitten er immers oneindig veel andere reële getallen. Je hebt dus oneindig veel reële getallen tussen nul en eender welk klein positief getal en toch zijn ze allemaal te groot.

Het lijkt onbegonnen werk daar een nog kleiner getal tussen te wringen dat de kans van één lot in loterij op een aftelbaar oneindige verzameling kan uitdrukken. En toch is dit in feite waar mijn oplossing op neer komt: door hyperreële getallen te gebruiken om kansen uit te drukken, krijg je beschikking over infinitesimalen. Infinitesimalen zijn kleiner dan eender welk positief reëel getal en toch groter dan nul.

Deze infinitesimalen zijn essentieel in de niet-Archimedische waarschijnlijkheidstheorie waar ik met collega’s aan werk. Met onze theorie kun je duidelijk het verschil aangeven tussen de situatie waarin je een waterkans hebt (bijvoorbeeld: je hebt één lot in een oneindige loterij) of die waarin je helemaal kansloos bent (bijvoorbeeld: je hebt geen enkel lot in eender welke loterij).

Gelijkaardige berichten:

Facebooktwittergoogle_plusredditpinteresttumblrmail

5 Reacties

  1. Pingback: Kleine publicatie over grote loterijen » Sylvia's blog

  2. Pingback: Filosloofje » Sylvia's blog

  3. Pingback: Koordeprobleem » Sylvia's blog

  4. Pingback: SciShirt? Geen saai shirt! » Sylvia's blog

  5. Pingback: Vragen van Daan – deel 1: over oneindigheid » Sylvia's blog

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

× 3 = 27