Koordeprobleem

Op zondag kreeg ik een vraag in mijn mailbox van David Vandormael, die ik hier (met zijn toestemming) deel. Hij had onlangs het boekje “Mathematische denkspelletjes” van Robert Müller op de kop getikt. Daarin vond hij op pagina 81 een puzzel over kansrekening:

“Vanuit een punt P op de omtrek van een cirkel trekt men een willekeurige lijn PQ. Hoe groot is de waarschijnlijkheid dat een willekeurige andere lijn die vanuit P wordt getrokken, korter is dan PQ?

Koordeprobleem.

Figuur 1: Het koordeprobleem uit het boekje van Robert Müller: de opgave (links) en de constructie voor de oplossing (midden en rechts). (Gebaseerd op een scan die bij DV’s e-mail zat.)

In zijn e-mail, vermeldde David Vandormael ook de oplossing uit het boek:

“Men lost dat heel mooi op de volgend manier op: we trekken vanuit P een lijn PQ’, die even lang is als PQ. Het is dan eenvoudig in te zien dat een willekeurige lijn PZ langer is dan PQ, als Z tussen Q en Q’ op de omtrek van de cirkel ligt (groen op de tekening). Alle andere lijnen zoals PK, zijn korter dan PQ (rood op de tekening). Hieruit volgt dat de verhouding tussen de lengte van de cirkelboog die wordt begrensd door Q, P en Q’ en de omtrek van de cirkel de waarschijnlijkheid aangeeft.

Als bijvoorbeeld PQ gelijk is aan de straal van de aangegeven cirkelboog, dan is de waarschijnlijkheid dat een willekeurige koorde korter dan PQ is, 1/3. Men kan namelijk een straal van een cirkel precies zes maal afpassen op de omtrek van de cirkel (dat is de constructiemethode van de regelmatige zeshoek).”

Figuur 2 is een illustratie van dit speciale geval.

Koordeprobleem.

Figuur 2: Speciaal geval, waarbij de lengte van PQ gelijk is aan de straal van de cirkel (R).

Tot hiertoe was hem alles duidelijk. Maar toen bedacht hij zelf een andere vraag bij deze opgave, waar infinitesimale kansen bij komen kijken. Dit was ook de reden dat hij bij mij kwam aankloppen:

“[T]oen kwam bij mij de vraag op wat de kans is dat een willekeurige lijn getrokken vanuit P op de omtrek van die cirkel, precies even lang is als PQ (dus niet korter of langer). En dan bleek dat er maar precies 1 zo’n lijn is op oneindig veel lijnen (namelijk PQ’ is precies even lang als PQ) of als we het met lengtes doen: de kans is de verhouding van de lengte op de cirkelomtrek van 1 zo’n lijn op de totale omtrek van de cirkel: dus een oneindig kleine lengte/de lengte van de cirkelomtrek wat dus volgens mij overeenkomt met een oneindig kleine kans of anders gezegd: een kans nul (maar niet niks want er is wel 1 zo’n lijn en dus is er wel een heel kleine of infinitesimale kans). Is dit juist?

Joseph Bertrand.

~

In mijn antwoord vertelde ik eerst eerst iets over oorspronkelijke opgave en dan iets over zijn vraag rond infinitesimale kansen.

~

Eerst iets over de originele puzzel. Zo’n lijnstuk dat twee punten op een cirkel met elkaar verbindt, noemen wiskundigen een koorde en dit vraagstuk is verwant aan het koordeprobleem van Bertrand. (Dat is dezelfde Bertrand als die van het doosjesprobleem). Bij het koordeprobleem van Bertrand luidt de opgave als volgt:

Beschouw een gelijkzijdige driehoek en de omgeschreven cirkel. Veronderstel dat er een willekeurige koorde van de cirkel gekozen wordt. Wat is de kans dat de koorde langer is dan een zijde van de driehoek?

Hierbij is er discussie mogelijk over wat het juiste antwoord is. De ambiguïteit ontstaat doordat het niet helemaal duidelijk is hoe we “een willekeurige koorde van de cirkel” moeten interpreteren. Ik doceer dit vraagstuk in mijn les over de geometrische interpretatie van kansrekening en het indifferentieprincipe van Laplace. Drie verschillende redeneringen leiden tot drie verschillende resultaten: 1/2, 1/3, of 1/4. (De Nederlandstalige Wikipedia-pagina volstaat voor de illustraties; meer context op de Engelstalige Wikipedia-pagina).

Koordeprobleem.

Figuur 3: Het koordeprobleem van Bertrand.

Het vraagstuk uit het puzzelboekje, verschilt op drie punten van de Bertrands koordeprobleem:

  • het gaat om de kans dat een andere koorde korter is dan een gegeven koorde, terwijl in het vraagstuk van Bertrand naar de kans op een langere koorde wordt gevraagd;
  • de referentielengte (lengte van de eerste koorde) is er tussen 0 (nul) en 2 \times R (diameter van de cirkel), terwijl dit bij de koordeparadox \sqrt{3} \times R is (zijde van de ingeschreven gelijkzijdige driehoek);
  • er wordt één punt op de cirkel vast gekozen, terwijl bij de koordeparadox beide eindpunten vrij zijn.

Vooral deze laatste aanpassing is van belang om de ambiguïteit in het originele probleem weg te nemen. We moeten niet weten wat “een willekeurige koorde van de cirkel” is, maar enkel wat “een willekeurige andere lijn die vanuit P wordt getrokken” is. Daarbij lijkt het duidelijk dat we een tweede willekeurig gekozen punt van de cirkel moeten beschouwen. (Of een willekeurige hoek ten opzichte van de raaklijn aan de cirkel in punt P tussen 0 en pi, maar dat komt op hetzelfde neer.) Het antwoord kan dan worden bekomen zoals hoger aangegeven (dat wil zeggen: als de verhouding tussen de relevante booglengte en de omtrek van de cirkel). Voor het speciale geval waarbij de lengte van PQ R is (Figuur 2), is de kans dat een willekeurige andere koorde korter is dan PQ 1/3; de kans dat deze langer is, is dus 2/3. Voor het geval waarbij de lengte van PQ \sqrt{3} \times R is (Figuur 3), is de kans dat een willekeurige andere koorde langer is dan PQ 1/3. (Dus de “willekeurige eindpunten”-methode in de Wikipedia-pagina over de koordeparadox.)

~

Koordeprobleem.

Figuur 4: Een alternatieve vraag over koorden: de opgave (links) en de constructie voor de oplossing (rechts).

Dan iets over de bedenking rond infinitesimale kansen. Als we vragen naar de kans op een andere koorde die dezelfde lengte heeft als PQ, dan is er inderdaad één mogelijkheid op succes uit (overaftelbaar) oneindig veel mogelijkheden, waarbij al deze mogelijkheden een gelijke kans hebben. Met de klassieke kansrekening is deze kans nul. Er is ook een alternatieve kansrekening mogelijk (waar ik zelf aan werk: zie hier en hier), waarin deze kans een infinitesimaal strikt groter dan nul is. Terwijl de klassieke kansrekening met reële getallen werkt, werkt de alternatieve theorie met hyperreële getallen. Het reële getal nul is de dichtste benadering van alle mogelijke infinitesimale hyperreële getallen.

De term “infinitesimale kans” kan trouwens ook worden gebruikt in combinatie met de klassieke kansrekening: daarbij duidt deze term gebeurtenissen aan die (1) kans nul hebben, maar die (2) niet logisch onmogelijk zijn. (Bij dit vraagstuk zou een voorbeeld van een logisch onmogelijke gebeurtenis zijn: een koorde die zowel strikt kleiner is dan PQ en strikt groter is dan PQ; dit kan natuurlijk niet.) En dit komt dan precies overeen met de gevallen waarin de alternatieve kansrekening een strikt positieve, infinitesimale kans aan de gebeurtenis toekent. (Iets dat logisch onmogelijk is, krijgt ook in de alternatieve theorie kans nul.)

~

Kortom, de vraag die David Vandormael bedacht, is inderdaad een voorbeeld van een infinitesimale kans.

Gelijkaardige berichten:

Facebooktwittergoogle_plusredditpinteresttumblrmail

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

8 + 1 =