Huiswerk (met bijna twintig jaar vertraging)

In dit stukje doe ik het verhaal van de extra tien voor chemie die ik niet gekregen heb.

Dit stukje is in licht gewijzigde vorm als column verschenen in Eos.
(Jaargang 32, nummer 9.)

Koolstofpuzzel.

Ondanks de duidelijke regelmaat in mijn tabellen vond ik de totaalformule voor het aantal isomeren van een alkaan niet.

1, 1, 1, 2, 3, 5, 9, 18, 35, 75, …

In het vierde middelbaar kregen we organische chemie, met het element koolstof in de hoofdrol. Eerst leerden over koolwaterstoffen zoals propaan en butaan, waar auto’s met een lpg-tank op rijden. Dit zijn moleculen met een onvertakte koolstofketen. Daarna leerden we dat er ook vertakte koolwaterstoffen bestaan. In dit deel van de cursus stonden er opvallend weinig formules. “Hoeveel vertakte koolstofketens kan je dan maken met een gegeven aantal koolstofatomen?” vroeg ik aan onze leraar. Mijnheer Staut antwoordde: “Dat weet ik niet, maar probeer het maar uit te zoeken. Als je de oplossing vindt, krijg je een extra tien.” Frustrerend om te horen, maar dictatisch gezien een slimme zet. Het aanbod gold uiteraard ook voor de andere leerlingen.

Ik was ervan overtuigd dat die extra tien al binnen was. Er stonden achteraan in de klas handboeken over chemie: daar zou de formule zeker in staan. We zochten enthousiast, maar vonden het niet. Noodgedwongen probeerde ik de formule zelf af te leiden. Zo moeilijk kon het toch niet zijn? Die avond begon ik dus koolstofketens te tekenen. Het komt erop aan geen configuraties dubbel te tellen. Als je een ‘zijketen’ aan het eerste atoom van de hoofdketen koppelt, is dat in feite helemaal geen zijketen, maar nog steeds een lineair molecule (dat in een bocht ligt). Ook andere structuren kunnen meerdere voorstellingen hebben. Een zijtak op het voorlaatste atoom is bijvoorbeeld slechts een gespiegelde weergave van een zijtak op het tweede atoom. Je moet een waterdicht systeem bedenken om dit soort symmetrieën te doorzien en elke configuratie exact één keer te tellen.

Cursus chemie vierde middelbaar.

Isomeren van alkanen tekenen in de cursus: alle bindingen en waterstoffen moeten worden aangeduid. In mijn eigen notities hield ik het al snel bij het koolstofskelet.

Wekenlang bleef ik vertakte ketens tekenen. Ik ontwikkelde een compacte notatie door koolstofatomen voor te stellen door bolletjes op ruitjespapier. Waterstofatomen en bindingsstrepen liet ik weg. Zo werd het probleem herleid tot de wiskundige kern ervan: een vraagstuk uit de combinatoriek. Al tekenend zocht ik naar de regelmaat, maar het leek alsof ik bij elk groter aantal koolstoffen meer uitzonderingen vond op de regels die ik voordien had gevonden. Ik werkte alles uit tot tien koolstoffen, waarbij er al 75 verschillende configuraties zijn.

Het is me niet gelukt om voor het einde van het trimester een algemene formule te vinden. Toch waren dit mijn eerste stappen in het ‘vrije’ onderzoek met de emoties die daarbij horen. Je vertrekt van een vraag waar je zelf zielsgraag het antwoord op wil weten, maar dat je niet meteen vindt bij een expert of in een naslagwerk. Misschien ben je de eerste die zich deze vraag stelt en sta je op het punt het antwoord te vinden? Spannend! Je probeert verschillende dingen, maar niets lijkt te werken. Je ligt er ’s avonds van wakker en staat er ’s morgens mee op. Toen het bij wiskunde het jaar nadien over combinatoriek ging, spitste ik de oren en begon ik met hernieuwde moed aan de koolstofpuzzel. Opnieuw zonder succes. Je voelt je gaandeweg dommer worden, maar in werkelijkheid leer je veel bij.

Koolstofpuzzel.

Koolstofpuzzel: ik vond een systematische manier om alle isomeren te vinden, maar een formule zag ik er niet in.

Het is zo’n twintig jaar te laat om mijn oplossing in te leveren. Toch doe ik een ultieme poging. Ik zoek online naar de getallenrij van de eerste tien configuraties. De zoekmachine suggereert de getallenrij 1, 1, 1, 2, 3, 5, 9, 18, 35, 75. Bij mij staat er 32 op de negende plaats: blijkbaar heb ik destijds drie combinaties niet gevonden. Voor tien klopt mijn resultaat wel. Mijn vraag werd in 1875 al onderzocht door de Britse wiskundige Arthur Cayley: hij zag het als een graaf (een ‘vier-valente boom’ genoemd) en stelde een formule op, maar ook hij maakte een fout die zichtbaar is vanaf twaalf atomen.

Pas rond 1998, dus enkele jaren nadat ik deze vraag had gesteld, werd de definitieve formule gevonden, onafhankelijk van elkaar door enerzijds twee theoretische chemici (Laimutis Bytautas en Douglas J. Klein) en anderzijds twee wiskundigen (Eric Rains en Neil Sloane). De beslissingen die je moet maken om geen structuren dubbel te tellen, blijken trouwens ook nuttig te zijn bij het vastleggen van unieke namen voor de moleculen.

Voor dit schooljaar wens ik alle scholieren een leerkracht toe die een extra tien uitlooft voor een vraag die ze zelf hebben gesteld.

~

Extra links:

  • Het was de OEIS-website (online encyclopedie van rijen gehele getallen) die me feilloos naar bovenstaande informatie leidde. Lees hier een interview van Quanta Magazine met Neil Sloane, de wiskundige die #OEIS 50 jaar geleden opstartte en nog steeds onderhoudt.
  • De getallenrij 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, … staat bekend als A000602 in de OEIS. Het wordt bekomen als de som van twee deelrijen (A000022 en A000200).
  • Je kan online isomeren van alkanen bouwen. Leuk! :-) Er is ook een nuttige FAQ.
  • Het artikel uit 1998 van Laimutis Bytautas en Douglas J. Klein: “Alkane Isomer Combinatorics“.
  • Het artikel uit 1999 van Eric Rains en Neil Sloane: “On Cayley’s Enumeration of Alkanes (or 4-Valent Trees)“.
  • Een 4-valente boom is een speciaal geval van een graaf. Beetje jammer dat er geen grafentheorie gegeven wordt op de middelbare school. Ik ben er vrij zeker van dat ik dat veel leuker had gevonden dan al die goniometrische vergelijkingen. ;-) (Ik weet nog steeds niet waarom we die vergelijkingen altijd moesten omvormen!)
  • Voor wie geïnteresseerd is in een nadere  kennismaking met chemische grafentheorie is het artikel “Chemical Graph Theory and the Sherlock Holmes Principle” van Alexandru T. Balaban uit 2013 misschien een goede kennismaking (in het Engels).

~

Naschrift:

Op een dood moment ben ik op een kladblaadje nog eens begonnen. Het duurde me slechts een half uur om opnieuw alle isomeren van lengte één tot en met tien te vinden. Nochtans heb ik er vroeger veel meer tijd aan besteed. Zou dit komen omdat ik: (a) dit zo vaak gedaan heb (weliswaar lang geleden!) of (b) nu volwassen ben (en geduldiger ben) of (c) als onderzoeker geoefend ben in het soort denken dat hiervoor nodig is? Wellicht een combinatie van alle drie?

Natuurlijk had ik nu ook het voordeel zeker te zijn van de aantallen die ik moest bekomen. Het is altijd gemakkelijker – of op zijn minst geruststellender – als je weet dat de oplossing achteraan in het boek staat. In het onderzoek moet het boek echter nog geschreven worden. ;-)

O ja, over het belang van een goede onderzoeksvraag (en over het beangstigende en bevrijdende gevoel dat hoort bij het werken aan onopgeloste vraagstukken) schreef ik eerder deze column.

Gelijkaardige berichten:

Facebooktwittergoogle_plusredditpinteresttumblrmail

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Verplichte velden zijn gemarkeerd met *

Time limit is exhausted. Please reload CAPTCHA.