Tag Archief: briefwisseling

Vragen van Daan – deel 2: over het heelal

Van Daan kreeg ik twee vragen:

  1. Als het heelal oneindig is, hoe kan het dan nog uitdijen?
  2. Hoe kunnen er verschillende soorten oneindig zijn?

Vorig jaar plaatste ik mijn antwoord op de laatste vraag. Er kwamen wat andere dingen tussen, maar vandaag schrijf ik alsnog mijn tweede brief aan Daan met het antwoord op zijn vraag over het heelal.

Hubble.

Cluster van sterrenstelsels (MACS J0416) gefotografeerd door de Hubble-ruimtetelescoop. (Bron afbeelding: NASA/ESA.)

~

Beste Daan,

In mijn vorige brief heb ik proberen uitleggen waarom wiskundigen tegenwoordig denken dat er inderdaad meerdere soorten oneindigheid bestaan (je tweede vraag). Een belangrijk onderdeel van mijn antwoord was de theorie van Cantor over de ‘cardinaliteit’ van verzamelingen. Deze uitleg komt me nu goed van pas bij het beantwoorden van je eerste vraag.

Eerst even ter herinnering: twee verzamelingen hebben dezelfde cardinaliteit wanneer er een één-op-één relatie tussen bestaat. Met andere woorden, als er manier bestaat om aan elk element van de ene verzameling precies één element van de andere verzameling te koppelen zodanig dat ook alle elementen van de tweede verzameling aan bod komen. Als dit kan, dan zijn de verzamelingen “even groot” – in de specifieke betekenis van ze hebben “dezelfde cardinaliteit”. Dit is in feite hoe we eindige verzamelingen tellen, dus het is geen gek idee om het ook in het oneindige geval zo te proberen.

Hotel van Hilbert

Toch heeft deze manier van ‘tellen’ wat vreemde gevolgen in het oneindige geval. Die worden geillustreerd door het Hotel van Hilbert. (Hilbert is de naam van een belangrijke wiskundige: David Hilbert.)

  • Een extra gast

Stel je een hotel voor waarin de kamers genummerd zijn met alle natuurlijke getallen. Er zijn dus aftelbaar oneindig veel kamers in dit fictieve hotel. Bovendien zijn alle kamers in het hotel bezet. Op dat moment komt er een nieuwe gast aan. Wat nu?

Wel, de receptionist beveelt alle gasten naar de kamer te gaan waarvan het kamernummer één hoger is dan waar ze nu zijn. De gast in kamer 1 verhuist naar kamer 2; de gast in kamer 2 verhuist naar kamer 3; enzoverder. Zo hebben alle gasten die er al waren nog steeds een kamer en is kamer 1 vrijgemaakt voor de nieuwe gast.

Dit verhaal illustreert de volgende eigenschap van cardinaliteit: 1 + aftelbaar oneindig = aftelbaar oneindig.

Geen enkel eindig getal is gelijk aan één plus zichzelf. Het is dus wel duidelijk dat de gewone rekenregels voor eindige getallen niet gelden voor oneindige cardinaliteiten.

Als er meerdere extra gasten tegelijk op de stoep staan, kunnen we een soortgelijke oplossing bedenken. (Als er bijvoorbeeld 100 extra gasten zijn, dan laten we de gast uit kamer 1 verhuizen naar kamer 101, de gast uit kamer 2 naar kamer 102, enzoverder.)

  • Oneindig veel extra gasten

Goed, een eindig aantal extra gasten kan dit hotel duidelijk wel aan. Maar wat als er een nabijgelegen hotel, ook met aftelbaar oneindig veel bezette kamers, ontruimd moet worden en er dus nog eens aftelbaar oneindig veel extra gasten bij moeten?

Ook daarvoor is er een oplossing: laat elke gast verhuizen naar de kamer met als nummer het dubbel van zijn of haar huidige kamernummer. Na de verhuis zitten er enkel nog gasten in de kamers met even nummers en kunnen er dus aftelbaar oneindig veel nieuwe gasten inchecken in de kamers met oneven nummers.

Dit verhaal illustreert de volgende eigenschap van cardinaliteit: 2 x aftelbaar oneindig = aftelbaar oneindig. Of nog: de verzameling van alle even getallen heeft dezelfde cardinaliteit als de verzameling van alle natuurlijke getallen.

Bekijk ook onderstaand filmpje van TED-Ed over het hotel van Hilbert (6 minuten):

Uitdijend heelal

Uit metingen blijkt dat nagenoeg alle sterrenstelsels van ons en van elkaar weg bewegen. Deze waarneming is één van de peilers van de oerknaltheorie: de wetenschappelijke theorie die zegt dat ons heelal ooit veel heter en dichter was dan het nu is. Je kan je de uitdijing van het heelal het beste voorstellen als extra ruimte die erbij komt tussen de sterrenstelsels. Hiervoor worden soms de volgende beelden gebruikt:

  • Stel je de sterrenstelsels in onze omgeving voor als rozijnen in brooddeeg. Terwijl het deeg rijst, bewegen alle rozijnen uit elkaar doordat het deeg ertussen uitzet.
  • Of stel je ons sterrenstelsel voor als een mier die op een elastiekje loopt. Terwijl de mier stapt, wordt het elastiekje telkens verder uitgerokken.

De reden dat ik dit erbij schrijf is dat het woord oerknal (of Big Bang) de meeste mensen – heel begrijpelijk – aan een ontploffing doet denken, waarbij alle brokstukken vanaf de bron van de explosie uit elkaar door de ruimte vliegen. In het geval van het heelal is dit echter een zeer misleidend beeld! Het is namelijk niet zo dat er oneindig veel lege ruimte klaarligt waarin de sterrenstelsels aan ‘de rand van het heelal’ uitzwermen. (Er is geen rand van het heelal.) Bovendien is het niet zo dat er in het heelal één bijzondere plaats is waar de oerknal ooit heeft plaatsgevonden: de oerknal vond overal tegelijk plaats. Dat is – hopelijk – beter te begrijpen met het beeld van ruimte die erbij komt tussen de sterrenstelsel.

Hoe een oneindig heelal kan uitdijen

Nu hebben we -eindelijk!- alles wat we nodig hebben om je vraag over het heelal te beantwoorden. Als het heelal al oneindig is, hoe kan het dan nog groter worden? Stel dat we het volume van het heelal op twee momenten vergelijken (bijvoorbeeld nu en over een uur).

  • Voor en na het uitdijen kunnen we het heelal ‘oneindig’ noemen, maar dit betekent niet dat het niet groter is geworden: oneindig is geen getal. Zoals ik vorige keer al schreef, betekent dit woord enkel ‘niet eindig’. (Dit werkt zoals het woord ‘veel’: ik heb al veel boeken in huis en ik koop er nog een paar, dan zijn het er nog steeds ‘veel’ – en toch zijn het er nu meer dan voorheen.)
  • Stel dat we het volume van het heelal uitdrukken in kubieke meter. Als het heelal oneindig is, kunnen we het aantal kubieke meter uitdrukken met een cardinaliteit. Net zoals er in het Hilbert hotel altijd oneindig veel extra plaats gemaakt kan worden tussen de gasten, kan dit ook in een oneindig uitdijend heelal. Er komt extra ruimte bij tussen de ‘gasten’ van het heelal, namelijk tussen de sterrenstelsels. Vreemd genoeg wordt de cardinaliteit van het aantal kubieke meter in het heelal hierbij niet noodzakelijk groter, maar dit betekent niet dat het niet groter is geworden: cardinaliteiten zijn geen gewone getal. Cardinaliteit drukt een soort grootte-orde van oneindigheid uit. (Stel dat ik moet schatten hoeveel boeken ik in huis heb. Ik heb ze niet precies geteld, maar ik schat ‘duizenden’. Als ik er twee bij koop, of zelfs enkele honderden, dan zijn het er nog steeds “duizenden”. Toch heb ik achteraf meer boeken dan voordien en op een bepaald moment moet ik een kast bijkopen.)
  •  Als het heelal oneindig is, kunnen we het aantal kubieke meter ook anders uitdrukken, namelijk met een numerositeit. De numerositeit van het volume van het heelal wordt wél groter terwijl het heelal uitdijt. Hieraan kunnen we dus wel, net als bij gewone getallen, zien dat het groter is geworden. (Eerst had ik bijvoorbeeld 2540 boeken, daarna 2612.)

Ik stelde je vraag op Twitter aan Sean Carroll (theoretisch fysicus bij Caltech) en hij antwoordde als volgt:

“Space expands between galaxies. Think of the integers, and multiply them all by 2. Still infinitely many, but further apart.”

Carroll schrijft trouwens blogposts en heel boeiende boeken waarin hij complexe ideeën uit de fysica glashelder uitlegt en vaak ook verbindt met filosofische vragen – een aanrader, dus!

Is het heelal inderdaad oneindig?

Ik heb je vraag geïnterpreteerd als “Indien het heelal oneindig is, hoe kan het dan nog uitdijen?” Over de aanname wil ik wel nog een belangrijke opmerking maken: het is namelijk helemaal niet zeker of het heelal oneindig is! De snelheid van licht in vacuüm is ongeveer 300 duizend km/s. Dat is naar onze maatstaven is een zeer grote snelheid, maar het is wel een eindig getal. Doordat de lichtsnelheid eindig is en alle signalen in het heelal (voor zo ver we weten) zich maximaal met deze snelheid kunnen voortplanten, is er een grens aan hoe ver we kunnen kijken. (De signalen moeten ons tijdens de leeftijd van het heelal bereikt kunnen hebben.) We weten niet hoe groot het heelal is buiten het voor ons waarneembare deel, waardoor er ruimte blijft voor verschillende theorieën en speculaties.

Aarde in het waarneembare universum.

Aarde in het waarneembare universum. (Bron afbeelding.)

Sommige fysische modellen gaan ervan uit dat het heelal oneindig groot is, of dat wat wij het heelal noemen eigenlijk maar een klein deel is (een soort bubbel) van een veel grotere structuur. Hoewel we niet buiten het voor ons waarneembare deel van het heelal kunnen kijken, kunnen we wel proberen indirecte aanwijzingen te vinden in onze omgeving over hoe het heelal als geheel eruit ziet. Uit nauwkeurige WMAP-metingen van NASA maken we op dat het heelal in elk geval veel groter is dan het deel dat we kunnen zien. Zo proberen kosmologen loutere speculaties te scheiden van onderbouwde theorieën en toch een tipje van de sluier op te lichten over de structuur van het heelal als geheel.

Vriendelijke groeten,
Sylvia

Woord van de dag: varkensmestputschuim

Ik kreeg een vraag via e-mail, met als titel: “oppervlaktespanning vloeistof verhogen”. Mijn aandacht was meteen gewekt. De schrijver had op mijn blog iets gelezen over oppervlaktespanning en het verlagen ervan (bijvoorbeeld met zeep). Dit was zijn vraag:

“Bij ons in de varkensmestput ontstaat schuim. Is het mogelijk om de vloeistofoppervlaktespanning te verhogen? Als dit kan kunnen wij het schuim voorkomen of verminderen.”

Hier is mijn (geanonimiseerde) antwoord:

~

Dat is wel een héél toegepaste vraag… :-) Het is niet echt mijn expertise, maar ik probeer te helpen.

* Het is mogelijk om de oppervlaktespanning van water te verhogen (bijvoorbeeld door zout toe te voegen), maar dit effect is klein (veel kleiner dan de verlaging in oppervlaktespanning door het toevoegen van bv. zeep). Doordat het effect zo klein is, betwijfel ik dat dit voor praktische toepassingen relevant is.

* Intuïtief zou ik zeggen: er zand over gooien. Dit is niet echt een effect op de oppervlaktespanning, maar het maakt wel bubbels kapot. Maar ik weet niet of dat mag in een mestput, hoe vaak dat dan zou moeten en of het überhaupt werkt. Want het schuim is waarschijnlijk veel steviger dan zeepbellen… Maar dat laatste is misschien is het wel te testen met een kleine hoeveelheid van het schuim in een emmer?

* Volgende suggestie: Op internet zoeken op varkensmestput + schuim, maar dan in het Engels: “swine manure pit” + “foam”. Zo vond ik onder andere deze website, waaruit ik opmaak dat er speciale additieven bestaan, maar ik weet natuurlijk niet of die hier op de markt zijn.

* Wees wel een beetje voorzichtig, want ik vind ook resultaten voor ontploffingen van dergelijke mestputten. :-/ Hierbij wordt als mogelijke oorzaak verwezen naar (nieuwe families) bacteriën.

* Er worden blijbaar ook systematische studies naar gedaan (hier en hier). Ook hierbij is er sprake van bacteriën, die enige lengte hebben en zo als het ware voor een vezelige structuur zorgen, die grote bubbels in het schuim stabiliseert. (Deze uitleg doet me denken aan recepten voor zeepbeloplossing: daar voegt men ook draadachtige polymeren toe om de bubbelwand te verstevigen. De oplossing zou dan volgens mij zijn: niet iets extra toevoegen, maar voorkomen dat deze bacteriën of polymeren erin komen.) Voor oplossingen denken ze hier aan aanpassing van het voer, maar het onderzoek loopt nog, dus helaas geen praktische suggesties.

Voor een ruwe vertaling naar het Nederlands kunt u bovenstaande URLs ingeven bij Google Translate. Voor het hogervermelde eerste zoekresultaat (en dan kunt u de andere URLs bovenaan op de website inplakken.)

Ik heb uw vraag ook op Twitter gepost, als er daar nog suggesties binnenkomen, laat ik het u weten.

Veel succes gewenst bij uw zoektocht.

Vriendelijke groeten,
Sylvia

~

Verder suggesties welkom!

Aanvulling (15u):

Nog twee nuttige links (via Stef Aerts): “ en mogelijk

In die eerste pdf staan de conclusies op pagina 48: dit lijkt erop neer te komen dat werken met additieven niet de beste oplossing is.

Vragen van Daan – deel 1: over oneindigheid

Van Daan Maes kreeg ik per e-mail twee vragen over het heelal en oneindigheid. (Daan is een jaar jonger dan ik en we zaten vroeger op dezelfde lagere school.) Misschien heeft er nog iemand anders iets aan, dus vroeg ik toestemming om de vragen en antwoorden ook hier te plaatsen.

Zijn vragen (in het kort):

  1. Als het heelal oneindig is, hoe kan het dan nog uitdijen?
  2. Hoe kunnen er verschillende soorten oneindig zijn?

Hieronder mijn eerste brief aan Daan waarin ik zijn tweede vraag beantwoord.

Oneindigheid.
~

Beste Daan,

Wat een leuke vragen om te krijgen! Dit zijn allebei zaken die iets met mijn eigen onderzoek en interesses te maken hebben en het gebeurt niet vaak dat er iemand daar vragen over stelt (tenzij collega’s dan).

Voor mij is het het handigste om je tweede vraag eerst te beantwoorden. Mijn tijd is helaas beperkt, dus ik stel het antwoord op de eerste vraag (over het heelal) even uit tot een volgend bericht.

Je tweede vraag heeft alles te maken met de grootte van oneindig. Voor ik het antwoord kan geven, moet ik eerst iets uitleggen over oneindig.

Over oneindig

Letterlijk betekent oneindig enkel ‘niet-eindig’. Om daar in de wiskunde iets mee te kunnen doen, zullen we iets specifieker moeten zijn. Er wordt in verschillende contexten met oneindig gewerkt in de wiskunde, die niet allemaal exact hetzelfde betekenen. Om op jouw vraag te beantwoorden volstaat het om te kijken naar oneindig grote verzamelingen.

Het eenvoudigste en tegelijk belangrijkste voorbeeld van een oneindig grote verzameling is de verzameling van alle natuurlijke getallen, genoteerd als ℕ. Ik zal eerst zeggen wat dit zijn en dan een definitie geven.

  • Natuurlijke getallen zijn de gehele getallen die we gebruiken om te tellen: 1, 2, 3, … De drie puntjes op het einde betekenen ‘enzoverder’ en in dit geval kunnen we eindeloos doorgaan: er is geen grootste natuurlijk getal.
  • We kunnen de verzameling van alle natuurlijke getallen, ℕ dus, als volgt definiëren (maar om het helemaal correct te doen moeten we de axioma’s van de rekenkunde van Peano volgen):
    • Het getal 1 zit in ℕ
    • Voor elk getal n dat in ℕ zit, zit ook n+1 in ℕ
    • Verder zitten er geen andere getallen in ℕ

Dit volstaat om te zien dat er geen grootste getal in de verzameling ℕ zit. Kijk maar: stel dat iemand beweert dat er wel een grootste getal in ℕ zit. Laten we dit kandidaat grootste getal M noemen. Dan zit volgens de tweede regel van de definitie ook het getal M+1 in ℕ, maar dat getal is groter dan M en dus was de veronderstelling dat M het grootste was niet juist. Maar deze redenering gaat op voor elk element van ℕ! De opsomming van elementen van ℕ is dus eindeloos, of anders gezegd: ℕ is een oneindig grote verzameling.

ℕ heeft uiteraard wel eindige deelverzamelingen. Kijk bijvoorbeeld eens naar de eerst tien elementen. Dat is de verzameling {1,2,3,4,5,6,7,8,9,10}. We zullen een verzameling van deze vorm (alle elementen van ℕ van 1 tot en met een bepaald ander getal) een beginstuk van ℕ (‘initieel deel’) noemen.

Elke eindige verzameling kan in een zogenaamde één-op-één relatie gelegd worden met een beginstuk van ℕ. Stel, je neemt de kleuren van de Belgische vlag, dan kan je de volgende koppels maken: (rood,1), (geel,2) en (zwart,3). Dit is een symbolische manier van weergeven hoe we tellen: we wijzen dingen één voor één aan en noemen beginnend bij 1 telkens het eerstvolgende natuurlijke getal.

Dit kunnen we nu als definitie gebruiken voor een eindige verzameling: alle verzamelingen die in één-op-één relatie gebracht kunnen worden met een beginstuk van ℕ noemen we eindig.

Aangezien oneindig hetzelfde is als niet-eindig hebben we daarmee óók een definitie voor oneindige verzamelingen, namelijk die verzamelingen waarvoor er geen één-op-één relatie bestaat met een beginstuk van ℕ.

Nu kunnen we echt beginnen nadenken over je vraag: bestaan er verschillende soorten oneindig? Je bent hier in goed gezelschap, want hier hebben al verschillende generaties wetenschappers, wiskundigen en filosofen over nagedacht. Het antwoord is in de loop van de tijd wel veranderd.

Galileo en het paradoxale van oneindige groottes

Galileo bedacht (zo ongeveer) het volgende:

(meer…)