Tag Archief: kansrekening

Vraag van Mark: over pi en infinitesimale kansen

In reactie op mijn eerste brief aan Daan dwarrelde er nog een fijne vraag mijn inbox binnen, van een zekere Mark Mark Iske, bewoner van deze wonderlijke blogplek, met daarop zowel poëzie als patafysica (!) [aangevuld op 18/09]. Met zijn toestemming plaats ik zijn vraag en mijn antwoord ook weer op mijn blog. (Sorry, Daan, jouw tweede brief komt er ook aan, hoor!)

Marks vraag komt hierop neer:

Als de kans op een cijferherhaling in pi gelijk is aan 1/10 dan is het in theorie mogelijk dat ergens in de decimale ontwikkeling van pi het cijfer 1 wordt gevolgd door nog een 1, en nog 1, en nog 1, en nog 1, en nog 1, enz en zo aftelbaar oneindig door. Als ik je concept van infinitisimale kansen goed begrijp, is de kans op die oneindige reeks enen niet nul maar infinitisimiaal klein, en dus niet onmogelijk.
Als de getallenreeks waar pi uit is opgebouwd oneindig is, zou je verwachten dat ergens in pi die oneindige reeks van 1-en te vinden is, die uiteraard ergens in pi een beginpunt heeft, maar geen eindpunt. Maar je zou dezelfde redenering kunnen opbouwen rond een oneindige reeks 2-en (en ook 3-en, 4-en, enzoverder). Maar waar bevinden die reeksen zich dan, als de reeks 1-enen al oneindig lang doorgaat?

Voor ik deze vraag kan beantwoorden, moet ik eerst wat van de impliciete aannames rechtzetten.

Over normale en rationale getallen

Pi.(1) Het is niet bewezen dat pi een zogenaamd “normaal getal” is. (Zie ook hier) Normale getallen zijn getallen waarvoor inderdaad geldt dat alle cijfers en combinaties ervan even vaak komen in de decimale voorstelling ervan (en idem voor binaire of andere voorstellingen van het getal!).

Er wordt algemeen weliswaar aangenomen dat pi ook een normaal getal is, maar hier is geen bewijs voor. Het zou in principe dus kunnen dat er vanaf een bepaald punt in de decimale expansie van pi bijvoorbeeld nooit meer het cijfer 8 voorkomt.

(2) Nu denk je misschien dat het dan ook mogelijk is dat er vanaf een bepaald moment enkel nog 1-en voorkomen in de expansie van pi, maar dat is niet zo. Het is namelijk wél bewezen dat pi een irrationaal getal is. (Zie ook hier) Een getal waarbij vanaf een zeker punt in de decimale expansie enkel nog dezelfde eindige rij getallen wordt herhaald (bijvoorbeeld 1111111…) kan geschreven worden als een breuk (volgens dit recept) en is dus geen irrationaal getal. Maar pi is wél een irrationaal getal, wat betekent dat de decimale expansie dus niet zo’n herhaling kan bevatten.

Nu kan ik komen tot wat Mark wellicht echt bedoelde met zijn vraag:

(meer…)

Nieuwsflits: Weet ik veel?! Over toeval

Op donderdag 13 augustus kom ik tussen 12u en 13u op Radio 1 bij het programma Weet Ik Veel gepresenteerd door Koen Fillet. We gaan het hebben over toeval en kansrekening. Luister je mee?

Stel jouw vragen over toeval en (on-)waarschijnlijkheid op donderdag via Twitter/Facebook/Instagram (#weetikveel) of via mail (weetikveel@radio1.be).

Aanvulling (donderdag 13 augustus 17u)

Het was een leuke ervaring daar in de studio! :-) De uitzending herbeluisteren kan op de pagina van Radio 1. Alternatief: door deze mp3 (54,8 MB) te downloaden (rechtsklikken, “opslaan als” en daarna het bestand afspelen): klik hier.

Op de website van Radio 1 staat er trouwens nog een pagina over de uitzending: over Monty Hall.

Citaat.

Citaat uit de uitzending. (Bron: deze tweet.)

Interview – deel 2/3

Dit is het tweede deel van mijn ‘aanstellingsinterview’. Het eerste deel staat hier; het derde en laatste deel volgt binnenkort!

Dit deel van het interview gaat over mijn huidige aanstelling en gepland onderzoek.

~

Welke thema’s houden je tegenwoordig bezig? Waar hoop je later nog onderzoek naar te voeren?

Op dit moment ben ik bezig met onderwerpen uit de filosofie van de fysica waarbij vragen over kleine kansen en determinisme een grote rol spelen. De Newtoniaanse mechanica wordt vaak als het schoolvoorbeeld van een deterministische theorie gepresenteerd. Toch hebben Poisson en, recenter, Norton indeterministische systemen binnen de Newtoniaanse mechanica onder de aandacht gebracht. Daarbij is het bovendien niet duidelijk wat de waarschijnlijkheden zijn die bij deze oplossingen horen. Ik modelleer deze situaties met behulp van verschilvergelijkingen en infinitesimale tijdstappen. Zo slaag ik erin om wel kansen toe te kennen aan de diverse oplossingen. Daarbij komen de infinitesimale kansen waar ik in mijn tweede doctoraat aan heb gewerkt goed van pas. Aangezien het mogelijk blijkt om voor hetzelfde systeem zowel een deterministische als een indeterministische beschrijving te geven, rijst de vraag of het mogelijk is om van de werkelijkheid zelf te zeggen of ze al dan niet deterministisch is – of dat dit onderscheid niet van toepassing is op de werkelijkheid en hoe we dat dan moeten begrijpen.

(meer…)

Interview – deel 1/3

Bij het Hoger Instituut voor Wijsbegeerte aan de KU Leuven is het gebruikelijk dat professoren in het jaar van hun aanstelling worden geïnterviewd. Dit interview wordt meestal afgenomen door een doctoraatsstudent uit de groep, in mijn geval door Pieter Thyssen. De tekst verschijnt in een intern tijdschrift (“Mededelingen”), maar ik laat jullie hier ook meelezen.

Omdat het een lange tekst is geworden, publiceer ik het interview in drie delen. Het eerste deel gaat over de herkomst van mijn interesse voor fysica en filosofie en over mijn onderzoek in de voorgaande jaren.

~

Dag Sylvia. Terwijl het grote merendeel van de studenten tegenwoordig rechten, industriële of handelswetenschappen gaat studeren, koos jij voor fysica. Wat trok je in deze richting aan?

Dag Pieter. Wel, mijn plan was eigenlijk om astrofysicus te worden en daarna sciencefiction te gaan schrijven. Dat bedacht ik rond mijn vijftiende – een naïef plan dus, maar op basis ervan koos ik op de middelbare school wel consequent voor de richting met het meeste uren wiskunde per week, terwijl ik voor taalvakken nochtans minder inspanning moest doen. Het hele plan was geïnspireerd door Isaac Asimov, mijn favoriete sciencefictionauteur in die tijd. Ik wist dat hij wetenschapper was, die naast fictie ook populariserende boeken schreef, onder meer over astrofysica. Het ironische is dat ik er pas veel later achterkwam dat Asimov zelf helemaal geen fysicus was, maar een chemicus. (Lacht)

Was je toen al geïnteresseerd in de filosofie?

O ja, zeker! Naast sciencefiction en populariserende boeken over wetenschap las ik ook filosofie. Concreet herinner ik me uit die periode “Les jeux sont faits” van Sartre (voor de Franse les) en de Kritiek van Kant (een vertaling waarvan ik delen las terwijl ik hevige tandpijn had en voortdurend rondjes rond de tafel stapte). Ik begreep niet alles, maar het fascinerende me. De grote vragen van de filosofie spraken me aan, maar ik had de indruk dat de wetenschap in een betere positie stond om minstens een deel van die vragen ook te beantwoorden. Waarschijnlijk geloofde ik zelfs dat in de fysica een theorie van alles – waar de Griekse natuurfilosofen al naar op zoek waren – nu binnen handbereik lag. (Zucht) Toch besefte ik ook dat er nog veel spannende vragen waren, in de kosmologie bijvoorbeeld. Dat is bij uitstek een terrein waar fysica en filosofie even relevant zijn.

(meer…)

De paradox van Newcomb: bespreking

In het vorige bericht gaf ik de opgave voor de paradox van Newcomb.

Dit vraagstuk wordt een paradox genoemd omdat er twee manieren van redeneren zijn die beide correct lijken, maar die tegenstrijdige antwoorden opleveren op de vraag welke keuze de verwachte winst van de speler maximaliseert. In dit bericht leg ik beide redeneringen uit en probeer ik de spanning die ertussen bestaat op de spits te drijven.

~

(1) Eerste manier van redeneren: Neem enkel doos B!

We kunnen de opties die 0 € of 1 001 000 € opleveren negeren, want die vereisen dat de voorspelling fout was, maar het orakel is een uitzonderlijk goede voorspeller. De keuze gaat dus tussen 1 000 € (als je A en B neemt) of 1 000 000 € (als je enkel doos B neemt). Enkel doos B nemen is dus beter.

Volgens deze manier van redeneren doen twee gevallen in bovenstaande tabel er niet toe:

Tabel met overzicht van de twee gevallen die er echt toe doen (volgens de eerste redenering).

Tabel met overzicht van de twee gevallen die er echt toe doen (volgens de eerste redenering).

(2) Tweede manier van redeneren: Neem beide dozen!

Ongeacht wat de voorspelling was, het staat nu vast wat er in de doos zit, dus beide dozen kiezen is altijd beter (dominant). Kijk maar:

  • Als de voorspelling “A en B” was, dan heb je de keuze tussen 1 000 € (als je A en B neemt) of 0 € (als je enkel B neemt). In dit geval is beide nemen dus beter.
  • Als de voorspelling “enkel B” was, dan heb je de keuze tussen 1 001 000 € (als je A en B neemt) of 1 000 000 € (als je enkel B neemt). Ook in dit geval is beide nemen beter.
De tweede redenering vergelijkt de twee mogelijke voorspellingen en komt tot de conclusie dat beide dozen nemen altijd beter is.

De tweede redenering vergelijkt de twee mogelijke voorspellingen en komt tot de conclusie dat beide dozen nemen altijd beter is

Hoorcollege Newcomb.

Hoorcollege met een onderdeel over de paradox van Newcomb.

~

Het orakel Cassandra.Een associatie die ik heb bij de paradox van Newcomb is de Griekse mythe over Cassandra: het orakel wiens voorspellingen niemand ooit geloofde. In de opgave van Newcomb komt de speler de voorspelling van het orakel uiteraard niet te weten, maar als ik erover nadenk, lijkt het of ik mijn eigen voorspelling steeds in twijfel trek. Zo blijf ik op twee gedachten hinken: soms is een filosoof als een kleuter die dringend moet gaan plassen, maar liever nog even verder speelt. ;-)

  • Op weg naar de studio neem ik mezelf beslist voor om enkel doos B te kiezen. Enkel zo zit er 1 000 000 € in het spel en dat is significant meer dan 1 000 €. Klaar!
  • In de studio slaat de twijfel toe: enerzijds loop ik een risico met lege handen naar huis te gaan (als het orakel zich vergist heeft, is doos B leeg), maar anderzijds – en belangrijker – het staat toch al vast wat er in de gelsoten doos zit, dus kan ik A er net zo goed bijnemen. Dat is 1 000 € extra. Mooi meegenomen!
  • Maar als het orakel dit heeft voorzien, dan zal er niets in doos B zitten en bega ik een stommiteit.
  • Maar het staat al vast wat er in doos B zit.
  • Maar het is de beslissing waarvan ik nu op het punt sta ze te maken die het orakel voorspeld heeft.
  • Aaaaaahhhhh!!!

Ik lijk er dus maar niet in te slagen met mezelf een strategie af te spreken en me daar vervolgens aan te houden.

~

Mijn eerste reactie op de paradox* was dat het vraagstuk niet precies genoeg geformuleerd is: de opgave laat meerdere interpretaties toe en dat leidt tot verschillende reacties. In het bijzonder: er wordt niet duidelijk gemaakt wat het betekent dat het orakel “uitzonderlijk goed” is in voorspellen. Als we bijvoorbeeld zouden weten wat de waarschijnlijkheid is van een correcte/foute voorspelling, dan zouden we kunnen uitrekenen wat de verwachte winst is bij elke keuze.

Als de waarschijnlijkheid op een fout hoger is dan een bepaalde kritische waarde dan is de eerste strategie beter; als de waarschijnlijkheid op een fout lager is dan de kritische waarde, dan is de eerste strategie beter.

Dit idee blijkt niet origineel te zijn. Ook wiskundige N.J. Wildberger denkt in die richting in dit filmpje waarin hij het probleem introduceert.

Een echte paradox gaat echter niet zo maar weg! Ook hier blijft het de vraag of deze aanpak het probleem echt oplost. Zelfs als het orakel perfecte voorspellingen aflevert, waarbij de redenering voor “enkel doos B” de enige juiste lijkt, blijft het ook een feit dat er al vast ligt wat er in doos B zit op het moment dat je in de studio staat en dat het er enerzijds niet meer toe lijkt te doen wat je effectief beslist (fatalisme) en anderzijds de redenering “A en B” ook weer correct lijkt.

Wederom: Aaaaaahhhhh!!!

~

Pierre-Simon Laplace.Trouwens, kan zo’n orakel wel bestaan? Deze vervolgvraag roept een tweede associatie op: de “demon van Laplace“. Laplace veronderstelde deterministische natuurwetten (zoals de wetten van Newton) en een bovenmenselijk intelligent wezen dat de huidige posities en snelheden van alle deeltjes in het universum zou kennen. Zo’n wezen zou volgens Laplace de toestand van het universum op een willekeurig moment uit het verleden of de toekomst kunnen berekenen. (De relevante passage staat in “A philosophical essay on probabilities” (1814) p. 4; ik schreef er ook over in dit bericht.)

Zou de demon van Laplace de rol van het orakel kunnen spelen, of zou zelfs deze intelligentie niet in staat zijn het gedrag van mensen te voorspellen? Deze vraag heeft te maken met het verband tussen determinisme en vrije wil. Wanneer er mensen in het universum voorkomen, die de voorspelling van de demon aan de weet zouden kunnen komen (of op zijn minst ernaar gissen), dan lijkt het erop dat het wezen zich zou kunnen vergissen. Tenzij mensen niet echt een vrije wil hebben, maar het determinisme ook op hen van toepassing is.

~

*: Dit klopt niet helemaal. Ik ‘kende’ de paradox al jaren, maar had er tot voor kort nog nooit echt over nagedacht.

~

Wat denk jij?

De paradox van Newcomb: opgave

Samen met twee collega’s gaf ik een lezing over paradoxen aan laatstejaars van een middelbare school. Jan Heylen vertelde over de paradox van het verrassingsexamen en Pieter Thyssen over drie tijdreisparadoxen. Omdat we er thematisch een rode draad in wilden krijgen (tijd / voorspellen), kwam ik uit bij de paradox van Newcomb. En intussen heb ik die paradox ook gebruikt in een hoorcollege over determinisme en vrije wil.

Als definitie voor een paradox wordt vaak “schijnbare tegenstrijdigheid” gegeven, maar dat vind ik niet helemaal kloppen: eens je door hebt wat er schijnbaar aan is, houdt het – voor jou – op een paradox te zijn. Anderen hebben dat eerder en beter gezegd:

“In het algemeen zal een paradox, eenmaal begrepen, ophouden paradox te zijn G. Krol.

Van sommige bekende “paradoxen” meen ik te weten wat er aan de hand is – bijvoorbeeld welke aanname onterecht is of welke redeneerstap misleidend is. Ook in die zin was de paradox van Newcomb een goede keuze: ik claim er geen oplossing of uitweg voor te hebben. Voor mij is het nog steeds een echte paradox. Dat leek me wel zo eerlijk: net zo verward zijn als de leerlingen. :-)

~

Er waren eens een fysicus, een filosoof en een wiskundige. Het had het begin kunnen zijn van een grap, maar het is de ontstaansgeschiedenis van de paradox van Newcomb: een paradox over voorspelbaarheid.

De fysicus, William Newcomb, bedacht de paradox maar publiceerde hem niet. De filosoof, Robert Nozick, besprak de paradox voor het eerst in een essay en vernoemde hem naar de bedenker: “de paradox van Newcomb” (in 1969). De wiskundige, Martin Gardner, maakte de paradox bekend onder een breed publiek door erover te schrijven in zijn column “Mathematical Games” in Scientific American (in 1974).

De paradox van Newcomb illustreert een spanning tussen determinisme, vrije wil en het begrip rationaliteit (zoals het in de besliskunde gehanteerd wordt).

Newcomb.

De twee dozen uit de paradox van Newcomb.

Stel je de volgende situatie voor:

Je doet mee aan een nieuw spelprogramma “Orakel”. Je staat tegenover twee dozen:

  • Een doorschijnende doos “A” met 1 000 € erin (dit kan je zien).
  • Een ondoorschijnende doos “B” met ofwel 0 € erin ofwel 1 000 000 € erin.

Aan het programma werkt een orakel mee, dat uitzonderlijk goed is in het voorspellen van menselijke handelingen. Je weet niet wie of wat dit orakel is: het kan een mens zijn, maar net zo goed een computerprogramma, een buitenaards wezen, of misschien wel iets bovennatuurlijks. Wie weet is het gewoon iemand die jou heel goed kent.

De inhoud van doos B is vooraf bepaald aan de hand van de voorspelling van het orakel. Dit is als volgt gebeurd:

  • Als het orakel heeft voorspeld dat jij beide dozen zal kiezen, dan is doos B leeg.
  • Als het orakel heeft voorspeld dat jij enkel doos B zal kiezen, dan bevat doos B 1 000 000 €.

Als het orakel heeft voorspeld dat je willekeurig zal kiezen (bijvoorbeeld met een muntworp), dan is doos B ook leeg.

De inhoud van doos B kan niet meer veranderd worden op het moment dat jij aan het spel begint. Je bent vooraf op de hoogte gebracht van al deze spelregels.

Je mag nu kiezen: ofwel neem je A en B, ofwel enkel B.

Dit is nog een handig overzicht van de opties:

Tabel met overzicht van de vier gevallen.

Tabel met overzicht van de vier gevallen. (Idee overgenomen van Wikipedia.)

Zeg het maar: wat kies jij?

(Mijn bedenkingen komen in een volgend bericht.)

Wet van de waterkans

Dit stukje is als column verschenen in Eos.
(Jaargang 32, nummer 2.)

Een langere versie van deze tekst vind je hier.

En een gedichtje dat erbij past.

Waterkans.In Vlaanderen beschikken we over een mooi woord voor een uiterst kleine kans: waterkans. Kansloos wil zeggen dat de kans helemaal onbestaande is. Volgens het principe van Cournot zijn waterkansjes in de praktijk kansloos: een op voorhand gespecifieerde gebeurtenis waarvan de kans zeer klein is zal niet gebeuren. Dit principe is vernoemd naar Antoine Augustin Cournot die in 1843 inderdaad een dergelijke redenering publiceerde.

Volgens de eponiemenwet van Stigler wordt geen enkele ontdekking naar de oorspronkelijke ontdekker vernoemd. En inderdaad: het principe van Cournot is al terug te vinden in de geschriften van eerdere auteurs, zoals Jakob Bernoulli. In “De kunst van het gissen” (postuum verschenen in 1713) bewees Bernoulli als eerste een speciaal geval van de wet van de grote aantallen. Hij interpreteerde zijn wiskundige resultaat al in termen van praktische zekerheid.

Later ging de Franse wiskundige Émile Borel zo ver om in zijn boek “De kansen en het leven” uit 1943 te schrijven: “Het principe dat een gebeurtenis met een zeer kleine kans niet zal gebeuren is de enige wet van de kans.” Borel heeft ook een aantal vuistregels opgesteld voor welke gebeurtenissen men in welke context als onmogelijk kan beschouwen. Volgens hem zijn kansen kleiner dan één miljoenste (10-6) onmogelijk op de menselijke schaal en kansen kleiner dan één honderd-octiljoenste (10-50) onmogelijk op de kosmische schaal.

Het principe van Cournot lijkt zeer aannemelijk. De kans dat een op voorhand gespecifieerde combinatie van zes verschillende getallen tussen 1 en 45 wint bij de volgende lottotrekking is kleiner dan één op acht miljoen (ongeveer 0,000 012 %). Volgens Borels vuistregels is de hoofdprijs winnen met de Belgische lotto dus onmogelijk op de menselijke schaal. Ook het principe van Cournot zegt dat onze combinatie niet zal winnen.

Waterkans.Nochtans worden we voortdurend geconfronteerd met gebeurtenissen waaraan we op voorhand niet meer dan een waterkans hebben toegekend. Geregeld blijkt dat iemand vooraf de zes juiste getallen heeft aangeduid op het lottoformulier. Een kans, hoe klein ook maar groter dan nul, is en blijft een kans. De bijbehorende gebeurtenis kan niet op voorhand worden afgedaan als onmogelijk. Noem het de “wet van de waterkans”. De “wet van Wenmackers” allitereert even mooi, maar hierbij is opnieuw de wet van Stigler van kracht: wetenschapsfilosoof Brian Skyrms schreef hier immers al over in 1980. Hij benadrukt dat we kunnen winnen. Enkel als we niet meedoen aan de loterij is winnen echt onmogelijk.

Natuurlijk blijft het veel waarschijnlijker dat die ene, vooraf uitgekozen combinatie niet zal winnen. Het is precies deze vaststelling die het principe van Cournot zo plausibel maakt. In veel situaties weten we echter op voorhand met volledige zekerheid dat er een gebeurtenis met een zeer kleine kans zal optreden. Over een uur zullen de luchtmoleculen in onze dampkring zich in een bepaalde configuratie bevinden. Er zijn zeer veel configuraties mogelijk waardoor de kans behorende bij elke specifieke configuratie zeer laag is, maar er zal er één gerealiseerd worden. Dit is mijn wet, de wet van de waterkans: “Als elke mogelijke gebeurtenis een even kleine kans heeft, moet er met zekerheid een gebeurtenis met zo’n kleine kans gerealiseerd worden.”

Kosmische loterij.Als afsluitende denkoefening moet je je eens proberen voorstellen hoe klein de kans was dat je geboren zou worden en dat je leven zich vervolgens precies zo zou voltrekken als het tot op de dag van vandaag heeft gedaan. Hoe groot was die kans op basis van informatie beschikbaar negen maanden voor je geboorte? Negen jaar voordien? Negentig jaar ervoor? Toen de eerste mensen ontstonden? Toen de aarde gevormd werd? Het zonnestelsel? Het heelal???

Als je genoeg details in rekening brengt, kom je al snel bij een kans van minder dan één honderd-octiljoenste uit. Moeten wij onszelf dan tot een paradox verklaren, onmogelijk op de kosmische schaal? Welnee, we zijn gewoon allemaal het levende bewijs van de collectieve kracht van waterkansen. Wij zijn de onvoorziene winnaars in de kosmische loterij.

Er staan ons nog veel onvoorspelbare gebeurtenissen te wachten, zoveel is zeker.

De enige wet van de kans

Waterkans.Op mijn blog heb ik het al vaker gehad over kleine kansen, zogenaamde waterkansen. (Soms duiken ze zelfs op in de vorm van colakansjes!) Ook mijn Eos-column deze maand gaat erover. De column is gebaseerd op de langere tekst hieronder, die ik in 2012 schreef. Rond die tijd gaf ik namelijk een presentatie over kleine kansen voor de Nederlandse Vereniging voor WetenschapsFilosofie (NVWF, waar ik toen nog geen lid van was, laat staan secretaris). Naar aanleiding van dit onderwerp gaf ik toen een interview voor Hoe?Zo! bij de Nederlandse radio 5, dat hier nog steeds te herbeluisteren is.

~

Het principe van Cournot stelt dat een op voorhand gespecifieerde gebeurtenis met een zeer kleine kans niet zal gebeuren. Dit idee is al terug te vinden in de geschriften van Bernoulli. Borel noemde het zelfs “de enige wet van de kans”. Daar tegenover staat mijn wet van de waterkans, die zegt dat je in veel situaties op voorhand zeker kunt zijn dat er een gebeurtenis met een kleine kans gerealiseerd zal worden. Verwacht het onverwachte in deze beschouwing over grote aantallen en kleine kansen.

Bernoulli’s “gouden stelling”

Jakob Bernoulli.Jakob Bernoulli was een befaamd Zwitsers wiskundige die leefde van 1654 tot 1705. Hij zou niet de laatste bekende wetenschapper worden in de Bernoulli-familie. Zo maken we in de fysica nog steeds gebruik van de wet van Bernoulli om de druk in stromende vloeistoffen of gassen te beschrijven; deze wet is vernoemd naar de in Groningen geboren Daniël Bernoulli, een neef van Jakob. Naar Jakob zelf is geen natuurkundige wet vernoemd, maar wel een wiskundige stelling: de stelling van Bernoulli, het eerste voorbeeld van een wet van grote aantallen.

Jakob Bernoulli schreef een verhandeling over de waarschijnlijkheidsrekening, die pas na zijn dood verscheen (in 1713): “Ars Conjectandi” of “De kunst van het gissen”. Hierin beschreef hij waarschijnlijkheden als graden van zekerheid; dit is een subjectieve interpretatie van wat kansen zijn, die in contrast staat met objectieve interpretaties, bijvoorbeeld in termen van frequenties. In zijn boek presenteerde Jakob ook zijn “gouden stelling” – dit is de eerder genoemde stelling van Bernoulli –, als oplossing van een vraagstuk dat hem twintig jaar lang had beziggehouden.

Stel dat je een eerlijke munt opgooit. De kans op kop is dan 50%, net als de kans op munt. Dit is een voorbeeld van een Bernoulli-experiment; in het algemene geval hoeven de kansen op succes (kop) en mislukking (munt) overigens niet gelijk te zijn. Herhalen we nu de (eerlijke) muntworp een groot aantal maal, dan verwachten we dat we in ongeveer de helft van de gevallen kop te zien en in de andere helft van de gevallen munt. De (sterke) wet van de grote aantallen drukt deze verwachting als volgt uit: de fractie van de muntworpen die kop opleveren convergeert vrijwel zeker naar 50%.

Hierbij vallen er drie bedenkingen te maken.

  • Ten eerste suggereert de wet een brug tussen het begrip kans enerzijds en experimenteel waargenomen fracties of frequenties anderzijds – een brug dus tussen pure wiskunde en experimentele wetenschap. Opgepast: het betreft een puur wiskundig resultaat, dat op zichzelf deze brug nooit kan slaan.
  • Ten tweede moeten we de frase “vrijwel zeker” hier interpreteren als “met kans 100%”. Daarbij moet je weten dat dit laatste niet garandeert dat het noodzakelijk zo moet zijn, enkel dat het oneindig veel waarschijnlijker is dan dat het niet zo gebeurt.
  • Ten derde was de oorspronkelijke stelling van Bernoulli een zwakke wet van grote aantallen, maar de verschillen met de sterke wet laten we hier buiten beschouwing.

Jakob interpreteerde zijn wet van de grote aantallen als volgt: we kunnen een zeer hoge waarschijnlijkheid op een bepaalde gebeurtenis beschouwen als morele zekerheid. Verder kunnen we de frequentie waarmee we een gebeurtenis waarnemen gebruiken als een schatting van de waarschijnlijkheid van die gebeurtenis. (meer…)

Spruitjes in een saus van kansrekening

Het cliché wil dat kinderen geen spuitjes spruitjes [met dank aan een oplettende lezer!] lusten. Bij ons zit het anders: ons zoontje eet juist graag spruitjes, net als zijn papa. Ik ben thuis de enige die bij de geur van spruiten alleen al op de vlucht slaat. Natuurlijk word ik hier wel eens mee geplaagd, maar dat vind ik onterecht. En de wetenschap steunt me daarin: ik ben gewoon erfelijk belast!

Stelling van de dag:

Het is helemaal niet stoer om te zeggen dat je spruitjes lust. Sommige mensen proeven niet hoe bitter die zijn: ze missen daartoe de werkzame variant van een bepaald gen (TAS2R38-gen).

Spruitjes.Waarom ik op een zondagavond over spruitjes en genetische aanleg voor het proeven van bitter begin? Welnu, in de Nationale WetenschapsQuiz 2014 zat er een vraag hierover en dat in combinatie met kansrekening (zie vraag 11). Ha, spruitjes in een saus van kansrekening, dat is dan weer wel spek naar mijn bek! :-)

Uiteraard blogde ik hier al eerder over, maar het verhaal kreeg een staartje in de commentaren. Voor wie het gemist heeft: iemand betwijfelde of de modeloplossing van NWO wel juist was, maar ik kon hem overtuigen. Ook Mark Peeters – Vlaanderens zelfverklaarde nieuwe Copernicus – dacht aanvankelijk dat er iets mis was met de modeloplossing, maar gaf uiteindelijk zijn fout toe.

Nu is hij echter van mening dat weinig mensen de uitleg die tot de juiste oplossing leidt écht begrepen hebben. Daarom daagt hij de lezers van zijn blog uit om (nogmaals) uit te leggen waarom zijn initiële redenering (die tot een fout resultaat leidt bij de originele opgave) niet werkt.

Hij stelt de volgende variant van de opgave voor (hier uitgeschreven om misverstanden te vermijden):

Een stel heeft twee kinderen. Moeder vindt spruitjes niet bitter, vader wel. Het proeven van bitter is een dominante eigenschap van één gen. De werkzame en de niet-werkzame versie van dit gen komen even vaak voor. Wat is de kans dat beide kinderen de spruitjes wel bitter vinden smaken?

(Voor de volledigheid: in de originele opgave werd er gevraagd naar de kans dat beide kinderen de spruitjes niet bitter vinden smaken. Marks initiële idee was 1/3 x 1/3 = 1/9, terwijl de juiste oplossing 1/6 was.)

Marks initiële redenering levert als antwoord op bovenstaande variant 2/3 x 2/3 = 4/9 op.

Hij vraagt wie met hem wil wedden voor 100€. Nu, wedden doe ik niet, uit principe, maar ik wil wel met alle plezier een poging doen om uit te leggen waarom het antwoord op deze variant van de opgave niet 2/3 x 2/3 is.

In deel 1 zal ik uitleggen hoe de berekening dan wel verloopt (of althans één manier geven om het uit te leggen) en in deel 2 zal ik verduidelijken wat er mis gaat bij “als voor één kind de kans 2/3 is, dan is voor twee kinderen de kans 2/3 x 2/3”. (meer…)