Tag Archief: oplossing

Pluisjes (oplossing fotoraadsel)

Vandaag plaats ik de oplossing van het meest recente fotoraadsel. Maar eerst herhaal ik de dubbele opgave.

Deel 1

Dit zijn geen balletschoentjes. Wat is het wel?

Rara, wat is het wel?

Dit zijn geen balletschoentjes. Rara, wat is het dan wel?

Deel 2

En dit zijn geen tientallen oogjes. Wat is het wel?

Rara, wat is het wel?

Dit zijn geen tientallen oogjes. Rara, wat is het dan wel?

Er kwamen acht gokken binnen: drie via SciLogs en vijf via mijn eigen blog.

  • Voor de eerste foto werd er gegokt op iets plantaardigs (Lilith), zaadjes of zaaddoosje van een paardenbloem (Tim en G. Nauwelaerts) en meeldraden (Gerda van Etten).
  • Voor de tweede foto werd er gegokt op een aardbei (Tim), een zaadje met dauw erop (G. Nauwelaerts), een ouderwetse knoop (Liese) en een stampertje (Gerda van Etten).

(Het antwoord lees je na de vouw!)
(meer…)

Oplossing vraagstuk

Kat en MuisIn een poging de losse draadjes op dit blog weer wat in te perken, geef ik vandaag de oplossing van het vraagstuk dat ik bijna twee maanden geleden online zette.

Ook geef ik een beetje context bij het vraagstuk.

 

Ter herinnering, dit was de opgave:

Een muis zit bovenaan in een boom van 60 el hoog. Een kat zit op de grond aan de voet van de boom. De muis daalt een halve el per dag af en kruipt ’s nachts een zesde van een el terug omhoog. De kat klimt één el per dag en kruipt ’s nachts een kwart el terug naar beneden. De boom groeit een kwart el per dag tussen de kat en de muis en krimpt ’s nachts een achtste el.

In hoeveel dagen bereikt de kat de muis?

(Lees verder na de vouw.)

(meer…)

Traanfilm (oplossing fotoraadsel)

Bij mensen met een bleke oogkleur, kun je prachtig de structuur van de iris zien, zoals hier gefotografeerd door Suren Manvelyan.Het is een veelgehoord advies over babyverzorging: maak veel oogcontact met je baby, onder andere tijdens de voeding. Hier voeg ik graag mijn eigen advies aan toe: gebruik deze tijd eens om de oogkleur van je baby te bestuderen.

Vlak na de geboorte zijn de ogen van bijna alle blanke baby’s blauwgrijs. In een eerder blogbericht schreef ik al dat dit een “structurele kleur” is: de kleur wordt namelijk niet enkel bepaald door de aanwezige pigmenten, maar ook door verstrooiing van het invallende licht aan structuren in de iris. Als je aandachtig kijkt naar de ogen van een baby of van een volwassene met bleke ogen, kun je bovendien structuren in de iris ontwaren: dit is immers een spier, met een vezelachtige structuur, die zichtbaar is als kleine kleurvariaties. (Op de foto bij het fotoraadsel zie je bijvoorbeeld dat de iris bij ons kindje iets bleker is rond de pupil en iets donkerder blauw aan de rand ervan.)

Maar tijdens één van de voedingen zag ik dus nog iets anders en dat inspireerde me tot deze opgave voor een fotoraadsel:

Zittend voor het raam geef je de baby een flesje. In de ogen van het kindje zie je een weerkaatsing van het gebouw aan de overkant van de straat. Boven het gebouw drijven wolken voorbij: roze, groene en paarse wolken, die gaandeweg van kleur veranderen.

Je draait je om naar het raam om deze prachtige wolken te zien, maar de hemel is egaal blauw. Er is geen wolkje te zien.

Je kijkt terug naar de ogen van de baby en ja, hoor: de kleurrijke wolken zijn er nog steeds.

Rara, wat is er hier aan de hand?

Reflectie van gebouw in babyoog.

Reflectie van gebouw in babyoog. Rara, wat is er aan de hand met die kleurrijke wolken?

Je leest het antwoord na de vouw. (meer…)

De fysica van hemelsblauwe ogen

Bij mensen met een bleke oogkleur, kun je prachtig de structuur van de iris zien, zoals hier gefotografeerd door Suren Manvelyan.Als je al ooit iemand “hemelsblauwe ogen” hebt toegedicht, dan ben je geen bijster originele dichter, maar mogelijk wel een betere fysicus dan je zelf beseft!

Ogen worden soms “spiegels van de ziel” genoemd  en spiegelen doen ogen alleszins. Het laatste fotoraadsel was een detail van een oog, waarin je de Gentse Graslei weerspiegeld zag. Als je vlak voor iemand staat, kun je jezelf (verkleind) weerspiegeld zien in de ogen van die persoon, als een poppetje. Daar komt de uitdrukking “in de poppetjes van iemands ogen kijken” vandaan. Het Latijn voor pop is ‘pupil‘ en dat woord gebruiken we overdrachtelijk voor het donkere, middelste deel van het oog, waar we onze weerkaatsing ook het beste kunnen zien.

Vorige keer schreef ik dat je het oog als een bolle spiegel kunt beschrijven met klassieke optica. Daarbij vermeldde ik al dat  het oogoppervlak geen perfecte spiegel is, want je ziet tegelijk met de weerkaatsing ook iets van het oog zelf.  Vandaag stappen we dus dóór de spiegel en gaan we op zoek naar de oorsprong van de regenboog van onze ziel…

We zullen zowel fysica als biologie nodig hebben om een antwoord te geven op deze vragen:

  1. Waar komt onze oogkleur vandaan?
  2. Kunnen ouders die beiden blauwe ogen hebben, toch een kind krijgen dat bruine ogen heeft?
  3. Kun je je oogkleur permanent veranderen, met een pilletje of een operatie?

Wat je van buitenaf ziet van de oogbol is het oogwit en de oogappel. De oogappel bestaat uit de pupil en de iris. De pupil zie je als een zwarte stip, omdat dit een opening is waardoor je de donkere binnenkant van de oogbol ziet (het oog is een soort ‘camera obscura‘ of donkere kamer). De iris is het gekleurde deel rond de pupil; dit wordt ook het ‘regenboogvlies’ genoemd. Als we het hebben over iemands oogkleur, bedoelen we dus eigenlijk zijn of haar iriskleur. Mijn eigen irissen zijn nagenoeg perfect egaal donkerbruin. Dat vind ik jammer, want bij mensen met lichtere oogkleuren – zoals blauw, groen, of grijs – kun je meer structuur zien. Ook bestaat een lichtere iris vaak uit meerdere kleuren. Het fotoraadsel toont daar een voorbeeld van: je ziet in de iris een mengeling van geel en blauwgrijs, in een soort netachtige structuur.

Bij mensen met een bleke oogkleur, kun je prachtig de structuur van de iris zien, zoals hier gefotografeerd door Suren Manvelyan.De prachtige close-ups van Suren Manvelyan (theoretisch fysicus en fotograaf) laten de structuur in de iris zeer duidelijk zien. Dit doet me denken aan ouderwetse knikkers, waarbij er midden in het transparante glas gekleurde golfjes zitten. Als kind vroeg ik me af hoe ze die golfjes daarin kregen. Later besefte ik dat mijn vraag slecht geformuleerd was: de gekleurde structuren ontstaan immers samen met de rest van de knikker, tijdens het smeltproces van het glas. Bij het oog is de situatie vergelijkbaar: je moet al een beetje weten over hoe het oog is opgebouwd, voor je gerichte vragen kunt stellen over de kleur ervan. Tot voor kort dacht ik dat enkel het buitenste laagje rond de pupil een kleur heeft, of met andere woorden: dat de iris een heel dun laagje is, dat door en door dezelfde kleur heeft.

Laten we dus bij het begin beginnen: wat is de iris eigenlijk? De iris bevindt zich tussen het hoornvlies (het buitenste deel van het oog, waarin ik me al eens gesneden heb) en de interne ooglens (zie ook deze anatomische dwarsdoorsnede). De iris is een kringspier, die de pupil kan doen samentrekken of verwijden en daarmee dezelfde functie vervult als het diafragma in een camera. Eens je erbij stilstaat dat de iris een spier is, is het niet moeilijk om te beseffen dat dit orgaan – net als een knikker – een interne structuur heeft: vandaar de vezelachtige structuur die zichtbaar is in bleke ogen.

Dit brengt ons bij een voorlopig en onvolledig antwoord op de eerste vraag: oogkleur wordt bepaald door reflectie en verstrooiing van het omgevingslicht aan de structuur van de iris. Dat omgevingslicht een bijna even grote rol speelt als de eigenlijke kleur van de iris (zeg, bij wit licht), maakt dat vooral mensen met een lichte oogkleur hun schijnbare oogkleur kunnen beïnvloeden door make-up en de kleur van de kleren die ze dragen. Voor de rest van dit stukje zullen we uitgaan van de oogkleur bij wit licht.

Bij een grote meerderheid van de mensen bevatten huid en haren pigmenten; bij albino’s echter ontbreken deze pigmenten, waardoor ze een zeer bleke huid hebben en wit haar. Ook met hun ogen is er iets aan de hand: albino’s lijken rode ogen te hebben. Dit suggereert al dat bij mensen zonder albinisme, oogkleur beïnvloed wordt door de aanwezigheid van pigmenten in de iris. Deze pigmenten ontbreken bij een albino, waardoor je dwars door hun irissen het bloed in hun ogen kunt zien. Voor albino’s zelf is dit gebrek aan pigmenten in hun ogen overigens knap lastig: hun doorschijnende irissen houden nauwelijks licht tegen en kunnen hun functie als diafragma dan ook niet naar behoren vervullen. Hierdoor kunnen albino’s minder goed zien.

Bijna alle baby's worden geboren met blauwe ogen. Het is dus even wachten voor je te weten komt of het kind later dezelfde ogen als papa of mama zal hebben.Bij mensen die wel normaal gepigmenteerd zijn, wordt hun oogkleur bepaald door diverse pigmenten op achter- en voorzijde van de iris. Het belangrijkste pigment daarbij is het donkerbruine melanine (waarvan ik er duidelijk veel heb). Een iris met weinig pigment op de achterzijde, ziet er blauwgrijs uit. Deze kleur ontstaat door interne verstrooiing van het licht in de iris. Ook de meeste baby’s hebben blauwgrijze ogen, maar tijdens de eerste levensjaren kan er nog pigment bijkomen en pas dan wordt hun uiteindelijke oogkleur duidelijk. Met genetica kun je proberen te voorspellen welke kleur dit zal worden, zelfs vóór het kind geboren is, want oogkleur (datgene wat je ziet: het fenotype) is voor een groot deel genetisch bepaald (het genotype).

Je zou kunnen denken dat kinderen een oogkleur hebben die een mengeling is van de oogkleur van hun ouders, maar dit blijkt in de praktijk niet te kloppen: ouders die beiden bruine ogen hebben, kunnen bijvoorbeeld een kind krijgen dat blauwe ogen heeft. Van kleuren mengen is er dus geen sprake. Als er iets gemengd wordt, zijn het chromosomen. Genetica leert ons dat ieder van ons twee verschillende exemplaren heeft van zijn chromosomen en dat elke ouder één chromosoom per paar doorgeeft, waardoor het kind weer twee exemplaren van elk chromosoom heeft. Welk exemplaar van elk chromosoom doorgegeven wordt, wordt door toevallige omstandigheden bepaald. Enkele genen op die chromosomen bepalen de pigmentatie en dus ook de oogkleur. Welke genen een kind meekrijgt en hoe deze zullen samenspannen in het ontwikkelen van de oogkleur is niet met zekerheid te voorspellen, maar je kunt wel kansen berekenen.

Zelf heb ik op school geleerd dat het hebben van blauwe ogen een recessieve eigenschap is, terwijl bruin dominant is: beide ouders moeten het gen voor blauwe ogen doorgeven, anders krijgt het kind bruine ogen. Dit Mendeliaanse beeld komt weliswaar overeen met de vaststelling dat bruine ogen veel meer voorkomen dan blauwe, maar het stelt de zaken toch iets te eenvoudig voor. Meer dan 75% van het verschil tussen blauwe en bruine ogen wordt inderdaad veroorzaakt door één gen: OCA2 dat zich op chromosoom 15 bevindt. Meer dan 75% dus, maar geen 100%. Er spelen dus ook nog andere genen een rol bij het bepalen van oog- (en trouwens ook haar-) kleur. (Dit noemt men ‘polygeen’.)

Hiermee hebben we een antwoord op de tweede vraag: ja, ouders met blauwe ogen kunnen een kind krijgen met bruine ogen, maar de kans is wel erg klein. Overigens wordt het door wetenschappers mogelijk geacht dat het genetische signatuur voor blauwe ogen afstamt van één enkele voorouder bij wie deze variant zich spontaan ontwikkeld heeft; dit zou betekenen dat al onze voorouders vóór die tijd bruine ogen hadden. Saai, hè!

In de tijd dat ik nog aan DNA-sensoren werkte, deden we experimenten met SNPs (spreek uit als ‘snips’), wat staat voor “single-nucleotide polymorphisms” of puntedefecten in DNA: variaties waarbij de DNA-codes in slechts één letter van elkaar verschillen. Welnu, in 2009 hebben onderzoekers van de universiteit Rotterdam met experimenten aangetoond dat oogkleur in 90% van de gevallen te voorspellen is aan de hand van amper zes SNPs, op even zoveel genen.

Dit is de chemische structuur van het biomolecule eumelanine, het donkere oogpigment. (Bron van de afbeelding: http://commons.wikimedia.org/wiki/File:Eumelanine.svg)Na dit uitstapje naar de genetica, komen we terug bij de pigmenten die onze oogkleur bepalen. Pigmenten zijn kleurstoffen, die een bepaald deel van het spectrum absorberen en een deel reflecteren. De aard van de pigmenten, de plaats en de dichtheid waarmee ze in de iris voorkomen, bepalen samen de uiteindelijke oogkleur. Bij mensen gaat het vooral om twee soorten melanine – eumelanine dat bruin is en feomelanine dat geel is – terwijl er bij andere diersoorten ook andere pigmenten en dus ook andere oogkleuren voorkomen.

Deze pigmenten komen voor in het epitheel (achterzijde) en het stroma (voorzijde) van de iris. Wanneer enkel de achterzijde gepigmenteerd is, zal het oog grijs tot blauw lijken, doordat het invallende licht verstrooid wordt in de vezelachtige structuur van de iris. Wanneer ook de voorzijde een licht pigment bevat, kun je nog andere kleuren krijgen. Ogen die achteraan donker zijn en vooraan geel pigment bevatten, kunnen bijvoorbeeld groen lijken. In deze gevallen blijft de iris gedeeltelijk transparant en wordt de kleur mede bepaald door de dikte en de dichtheid van de vezels. Wanneer de voorzijde echter donker gepigmenteerd is, zoals bij mij, kan het licht niet in de iris doordringen. Een groot deel van het licht wordt meteen geabsorbeerd door de buitenste laag van de iris, met een zeer egale, bruine kleur als gevolg. (Zie ook deze link.)

Als de pigmenten ongelijkmatig verdeeld zijn, zullen er meerdere kleuren zichtbaar worden in hetzelfde oog. Vaak heeft de rand rond de pupil een andere kleur dan de buitenrand van de iris (zoals Danny’s oog in het fotoraadsel). Er kan ook één sector anders gekleurd zijn (dag Riet!) of de twee ogen kunnen totaal verschillende kleuren hebben. Dit heet ‘heterochromie’ en is vrij zeldzaam bij mensen, maar courant bij sommige dieren, waarbij dan altijd één oog blauw is (bij honden bijvoorbeeld bij huskies en border collies).

Door andere pigmenten toe te voegen, kun je het regenboogvlies van het oog in principe in eender welke kleur van de regenboog verven.Dan rest er ons nog het antwoord te zoeken op de derde en laatste vraag: kun je je oogkleur veranderen? In elk geval is het zo dat je oogkleur op verschillende manieren kan veranderen tijdens je leven. Ik schreef al dat de meeste baby’s bij de geboorte blauwgrijze ogen hebben, die – mede onder invloed van de zon – kunnen evolueren naar een andere kleur. Na het derde levensjaar staat de oogkleur in principe vast.

Net als de huid, kan ook de iris ook nog op latere leeftijd in de loop van het jaar van kleur veranderen en dit onder invloed van zonlicht. Net als de huid worden ook de ogen zo doorgaans bruiner in de zomer. (Ik zal hier eens op letten bij mezelf, maar het zou kunnen dat mijn bril UV-licht tegenhoudt, waardoor mijn ogen niet nog donkerder worden door de zon.) Het zou ook zo zijn dat iemand met groene ogen in de zomer bruine vlekken krijgt op de irissen; een soort sproeten dus. Bij blauwe ogen zou zonlicht voor een lichtbruine ring rond de pupil kunnen zorgen. In al deze gevallen keert in de winter de normale kleur terug.

Het hebben van twee verschillende kleuren ogen is meestal aangeboren (hetzij genetisch bepaald of een gevolg van een letsel tijdens de zwangerschap), maar heterochromie kan ook na verloop van tijd ontstaan door ziekte (van een ontsteking tot tumor) of letsel, onder andere door oogdruppels die gebruikt worden in de behandeling tegen glaucoom (groene staar). Als je oogkleur plots verandert zonder duidelijke reden, kun je best eens naar de oogarts gaan.

Op kortere termijn is het trouwens zo dat je oogkleur voortdurend (een beetje) verandert. Wanneer de iris samentrekt, worden immers ook de pigmenten in het oog samengedrukt; door deze stijging in de concentratie van de pigmenten, verandert je oogkleur dus ook (subtiel).

Stel nu dat je je oogkleur opzettelijk wenst te veranderen. Je kunt natuurlijk gekleurde lenzen proberen, als je tijdelijk een andere oogkleur wil hebben. Aangezien lichte kleuren zoals blauw of groen deels door optische effecten in de iris onstaan, lijkt het mij dat dit enkel overtuigend zal werken als je bruine ogen wil nabootsen. Er zijn ook permanente methodes, die zeker een overtuigend effect zullen hebben, maar die wel erg drastisch zijn! De website van “Improbable research” berichtte eerder deze maand over twee patenten voor het veranderen van oogkleur: je kunt kiezen uit ‘schrapen’ of ‘verven’. Bij de schraapmethode wordt er met een laser een deel van de pigmentlaag verwijderd. (Ik zou zo het bruine pigment aan de buitenkant van mijn ogen kunnen laten verwijderen om blauwe ogen over te houden.) Bij de verfmethode wordt een deel van het buitenste deel van het oog (dus niet de iris zelf) weggenomen, gedroogd, geverfd en teruggeplaatst. (Net als gekleurde lenzen, lijkt dit me vooral geschikt om lichte ogen donkerder te maken.)

Voor geen geld ter wereld zou ik mijn ogen zo laten ontkleuren of bijkleuren! Dan maar geen groene ogen. Veel minder erg zou ik het vinden om ooit een ig-Nobelprijs in de wacht te slepen. Het criterium voor deze prijzen van Improbable research is: “Onderzoek dat mensen eerst doet lachen en dan doet nadenken”. Volgens mij komt ons NAP-onderzoek wel in aanmerking, want wie neemt een wetenschappelijk artikel over oneindige loterijen nu volledig serieus? ;-)

Blauwe ogen en blauwe lucht ontstaan beide door verstrooiing van wit licht en dus niet door pigmenten.Als je van deze lange uitleg maar één ding onthoudt, laat het dan dit zijn: er bestaat bij mensen niet zoiets als “blauw oogpigment”. Het antwoord op de vraag waarom er toch blauwe (of grijze) ogen zijn, is vergelijkbaar met het antwoord op de vraag waarom de lucht blauw (of grijs) is: dit komt door Rayleighverstrooiing van het zonlicht, waarbij de langere golflengten van het lichtspectrum worden geabsorbeerd en de kortere worden verstrooid aan de luchtmoleculen. De structuren waar het licht in het oog aan wordt verstrooid, zijn groter dan luchtmoleculen; in dit geval spreekt men van Mieverstrooiing of het Tyndall-effect. Het blauw van blauwe ogen wordt dus veroorzaakt door de structuur van de iris, net als interferentiekleuren in dunne lagen.

Ook “groen oogpigment” bestaat bij mensen niet: groene ogen kun je – fysisch gesproken – nog het beste vergelijken met een blauwe hemel gezien door een gele zonnebril, maar een dichter kan hier vast een mooiere vergelijking voor bedenken. (Suggesties altijd welkom!)

Oplossing fotoraadsel en een keukenproefje

Twee weken geleden vroeg ik jullie om mee te raden naar wat er op deze foto staat:

Rara, wat is dit?

Is het de nieuwe diamantplaneet? Of een abstract kunstwerk? Of nog iets helemaal anders???

Er kwamen 13 reacties: 2 op dit blog, 4 via Weetlogs en 7 via Facebook. Vandaag is het tijd voor de ontknoping…

Proficiat aan Steven Vanhullebusch, die met het juiste antwoord kwam: het is inderdaad de bodem van een ketel waarin spaghetti werd gekookt. Als bewijs toon ik hieronder een foto die op dezelfde dag is gemaakt:

Geen planeet, maar de bodem van een ketel.

Welkom op de spaghettiplaneet.

De foto was niet bewerkt, behalve dat ik de context van het beeld had verstopt onder een zwarte rand. Hierdoor werd het zeer moeilijk om de schaal van het voorwerp in te schatten; het kon immers gaan om een opname door een microscoop (suggestie van Thommy S) of door een telescoop (al wisten Youri Vassiliev en Frank Witsel de mogelijkheid van een planeet goed te weerleggen). Het voorwerp kon hol (binnenkant van een schelp) of bol (zeepbel, parel, knikker, …) lijken, maar was dus gewoon plat.

De mooie kleuren die achterblijven in de ketel na het koken van spaghetti fascineren me telkens weer, maar ik vreesde dat ik de enige mens op aarde was die daar foto’s van maakt… Ik kon mijn geluk dan ook niet op toen ik het werk van de Noorse fotograaf Christopher Jonassen ontdekte. Voor zijn boek “Devour” (hetgeen ‘verslinden’ betekent) maakte deze kunstenaar foto’s van verweerde en bekraste bodems van pannen, die hij vervolgens als hemellichamen presenteert. Zo kwam ik dus op het idee voor dit fotoraadsel.

Hoewel het voorwerp op de foto geen zeepbel is – al dan niet gevuld met rook – (gok van Reinout en Pat Mons), geen parel (gok van Danny) of binnenkant van een schelp (gok van Thommy S), geen knoop (gok van Ginette De Veerman) en evenmin een knikker (tweede gok van Pat Mons), krijgen deze pogingen toch een eervolle vermelding. Al deze voorwerpen hebben namelijk iets gemeen met de bodem van een spaghettiketel: hun parelmoerkleuren. De kleuren zijn in al deze gevallen te danken aan hetzelfde fysische fenomeen: interferentie van licht in dunne lagen.

Om te begrijpen hoe de kleurpatronen in een ketel ontstaan, kunnen we best even opfrissen hoe een regenboog ook alweer ontstaat. Zowel zonlicht als het licht van een lamp bestaan uit verschillende kleuren en elk van deze kleuren licht heeft een eigen golflengte. Zo heeft rood licht een langere golflengte dan blauw licht. Wanneer een lichtstraal schuin invalt op het contactoppervlak tussen twee materialen met een verschillende dichtheid (bijvoorbeeld tussen lucht en glas), gaat de straal niet rechtdoor, maar buigt ze af (‘lichtbreking‘ of ‘refractie’). De brekingshoek is niet alleen afhankelijk van de dichtheden, maar ook van de kleur van het licht (‘dispersie‘). Wanneer wit licht op een prisma invalt, zullen de langere golflengten (bv. rood licht) minder gebroken worden dan de kortere golflengten (bv. blauw licht). Zo kun je het spectrum van het licht zichtbaar maken: de kleuren die in de oorspronkelijke witte straal zitten, worden daarbij uit elkaar gehaald. Als de zon schijnt op regendruppels, werkt elke druppel als een klein prisma en zo ontstaat er een regenboog.

Als wit licht invalt op een prisma, wordt de blauwe kant van het spectrum sterker gebroken dan de rode kant.

Als wit licht invalt op een prisma, wordt de blauwe kant van het spectrum sterker gebroken dan de rode kant. (Bron van de animatie: http://commons.wikimedia.org/wiki/File:Light_dispersion_conceptual_waves.gif.)

Wanneer een lichtstraal op een transparant materiaal invalt, splits deze zich in twee: een deel zal van de straal op het oppervlak weerkaatsen (‘reflectie‘) en het andere deel zal in het materiaal doordringen en gebroken worden (‘refractie’). Stel je nu een dunne laag van een transparant materiaal voor, olie bijvoorbeeld. Stel dat er licht op invalt van één welbepaalde golflengte (‘monochromatisch licht‘). Dan vertrekken er van het oppervlak van de olie twee lichtstralen: één lichtstraal die van de bovenkant van de olielaag weerkaatst en één lichtstraal die van de onderkant van het laagje olie weerkaatst (zie dit plaatje). Deze tweede lichtstraal heeft een langere weg afgelegd (twee keer door de dikte van de olie). Licht kan voorgesteld worden als een golf en wanneer twee golven samenkomen (‘superpositie‘), kunnen deze elkaar uitdoven of versterken (‘interferentie‘). Als de golflengte van het gebruikte licht een geheel aantal keer past in de extra weglengte van de tweede lichtstraal (die samenhangt met de dikte van de laag), zullen beide golven in fase zijn en zal er versterking optreden; als de extra weglengte op een geheel aantal plus een halve golflengte uitkomt, zullen de golven in tegenfase zijn en elkaar uitdoven. (Dit is althans het eenvoudigste geval; als er fase-omkering gebeurt, is het precies andersom.) Alle andere gevallen geven iets ertussenin: geen volledige versterking, maar ook geen volledige uitdoving.

Wanneer er nu wit licht invalt op de dunne, transparante laag, dan geldt bovenstaande redenering voor elke golflengte afzonderlijk: bij een bepaalde laagdikte worden sommige kleuren versterkt, terwijl andere worden uitgedoofd. Kijk maar eens naar hoe het licht weerkaatst op een CD- of DVD-schijfje: de transparante beschermlaag op de CD is overal precies even dik en zorgt voor zeer heldere ‘regenboogkleuren’. (Tussen aanhalingstekens, want het zijn niet zoals bij een regenboog spectraal zuivere kleuren!) Als de laagdikte van plaats tot plaats varieert, ontstaan de typische gewolkte patronen van parelmoerkleuren van olie op water, zeepbellen, parels én de bodem van een spaghettiketel (‘iriseren‘).

Als je een beetje rondkijkt in de keuken, kun je overal mooie kleuren zien. Je kunt zo’n kleurrijke vlek trouwens fixeren op papier: laat een druppel transparante nagellak vallen op een kom water en schep de vlek op met donker karton (meer uitleg op deze Engelstalige website). Interferentie is niet alleen mooi, het is ook nuttig: met de interferometer van Michelson (ooit bedacht om het bestaan van ether te bewijzen) kun je de lichtsnelheid bepalen. Ook de antireflectielaag van brilglazen, die groene of paarse reflecties kan veroorzaken, werkt op het principe van interferentie. Meer lezen? Deze website legt interferentie in dunne films eenvoudig uit (in het Engels).

Jullie kunnen me helpen met een eenvoudig experiment in de keuken.Met de uitleg over interferentie in dunne films is één cruciale vraag onbeantwoord gebleven: waaruit bestaat de dunne laag in kwestie dan? Wat blijft er achter op de bodem na het koken van spaghetti? Is het zout, olie, of zetmeel? Om eerlijk te zijn, weet ik het niet zeker! Volgens Steven Beeson en James Mayer is het laagje afkomstig van het toegevoegde zout en bestaat het uit natriumoxide (op pagina 96 van het boek “Patterns of light“). Ook deze bron houdt het bij een oxide, maar dan van de ketelbodem zelf.

Ik kan me – met de beste wil van de wereld – niet meer herinneren of er zout danwel olijfolie aan te pas is gekomen, die keer dat ik die foto heb gemaakt. Gebrekkige administratie is natuurlijk geen goede manier om een wetenschappelijk experiment te doen. Daarom een oproep aan jullie, beste lezers. De volgende keer dat je pasta kookt, wil je dan een reactie posten als er mooie kleurtjes op de bodem te voorschijn komen? Zo ja, zet er dan bij:

  • of je zout of olie/boter hebt toegevoegd,
  • welk soort pasta het was,
  • van welk materiaal de ketel is gemaakt (als je dit weet).

Dan kunnen we er misschien samen achterkomen waaruit het dunne laagje bestaat dat voor de parelmoerkleuren zorgt in onze spaghettiketels. (Crowdsourcing schijnt hip te zijn, ook in het onderzoek.) Foto’s posten van mooie resultaten mag natuurlijk ook altijd. :)

Wetenschap is leuk om over te lezen, maar nog leuker om te doen – zeker als je het resultaat gewoon kunt opeten. Hartelijk dank alvast voor de reacties en laat het smaken, hè!