Tag Archief: tijd

Horrorverhaal in slow motion

Over onze blindheid voor trage veranderingen

Verschenen als column in Eos (oktober 2017).

‘Weet je wat gek is? Dag per dag lijkt er niets te veranderen. Maar snel genoeg is alles anders.’ Dat zegt Calvin tegen zijn knuffeltijger Hobbes in één van de strips van Bill Watterson. Herkenbaar is het zeker. Als je elke dag naar school of werk gaat, dan lijkt het of er aan de sleur nooit iets verandert. Maar als je afstudeert of van werk verandert en na enkele jaren terugkeert, dan blijkt er veel meer veranderd dan je ooit voor mogelijk had gehouden.

Calvin and Hobbes door Bill Watterson.

We kunnen het gras niet letterlijk horen groeien, zelfs al zien we na enkele dagen het verschil. Veel transformaties in ons leven voltrekken zich geleidelijk of in kleine stapjes. Als kleine stappen echter dezelfde richting uitgaan, dan kan het nettoresultaat overweldigend zijn. De Amerikaanse kunstenaar Jonathan Schipper confronteert ons met ons onvermogen om verandering in al haar details te vatten. In diverse galerijen stelde hij zijn project Slow Motion Car Crash voor. In een eerste versie liet Schipper twee miniatuurauto’s uiterst traag frontaal botsen. Vervolgens bouwde hij een levensgrote machine, die een echte auto tegen een muur liet crashen. De totale vernieling was bij voorbaat onvermijdelijk. Het publiek stond erbij, maar zag het niet gebeuren, omdat het hele proces een maand duurde.

Kunstencentrum STUK in Leuven kreeg de primeur voor de levensgrote versie van het kunstwerk – in 2008 was dat. Misschien was je er toen bij of las je erover in de krant, zoals ik. Sinds ik erover las, crasht die auto nog steeds uiterst traag in mijn hoofd. Niet in de loop van een maand, maar al bijna tien jaar.

Ik probeer te beseffen dat ook dat nog zeer snel is in vergelijking met geologische tijdschalen. De spanne waarin de aarde zich vormde, en het bestek waarin het leven via evolutie tot veelvormige oplossingen kwam voor overleven en voortplanten: vanuit dit perspectief is de moderne mens, samen met menselijke communicatie, nog maar pas op het toneel verschenen. Voor er mensen waren werd er op onze planeet nooit gepraat over het weer. Dat verandert in onze contreien voortdurend, terwijl er over langere periodes toch duidelijke trends en langlopende gemiddelden te ontdekken vallen. Die gemiddelden kunnen zelf ook veranderen, maar dat doen ze meestal traag. De klimaatverandering die we nu meemaken lijkt veel sneller te gebeuren dan wat de mensheid tot nu toe heeft meegemaakt. Anderzijds blijft ze te traag en te groot om er vat op te krijgen zonder hulpmiddelen, zoals systematische waarnemingen en klimaatmodellen.

Zo vormen klimaatwetenschappers zich een helder beeld van iets dat ook zij niet met een blik door het raam kunnen zien. Als niet-specialist hebben we nood aan hun verhalen om zelf tot een beeld te komen. In de zomer van 2017 schreef klimaatwetenschapper Kate Marvel een ‘horrorverhaal in slow motion’ over haar studiegebied.

“Om te beginnen hadden we onze planeet nooit ’Aarde’ mogen noemen.”

Ze start het verhaal als volgt: om te beginnen hadden we onze planeet, waarvan het oppervlak voor driekwart uit zoutwater bestaat, nooit ’Aarde’ mogen noemen. Als we iets dumpen in de zee verwachten we het nooit meer terug te zien; toch spoelen er geregeld spullen aan. En al zo lang lozen we zo veel extra broeikasgassen in de atmosfeer. Vroeg of laat krijgen we ook dat terug. De oceanen en de atmosfeer fluisteren voortdurend tegen elkaar – wat ze dan vertellen, verandert geleidelijk door onze impact. Een kind dat op het strand loopt, beseft de gevaren van de diepte niet, schrijft Marvel. We moeten het vertellen dat er een monster in de diepte huist. ‘Dat weten we. Want we hebben het daar zelf gestopt.’

Het is alsof de Slow Motion Car Crash versnelt, hoewel ook die versnelling vooralsnog onmerkbaar klein is. De afloop is echter niet onvermijdelijk: we zijn allemaal onderdeel van de machine. Wat we nu doen heeft weliswaar pas effect in de toekomst. Onze maatschappij lijkt niet goed georganiseerd om op dit soort tijdschalen beslissingen te nemen. Maar ook dat is te veranderen: met vele kleine stappen kunnen we iets groots bereiken.

Atoomklokken hebben hun beste tijd gehad

Dit artikel is eerder verschenen in Karakter.

Karakter.Het meten van de tijd heeft de mens altijd al gefascineerd, en door de eeuwen heen werden steeds preciezere methoden ontwikkeld. De huidige klokken worden alle gesynchroniseerd aan de hand van atoomklokken, maar ook die zijn stilaan voorbijgestreefd. De verwachting is dat er binnenkort nog betrouwbaarder klokken zullen bestaan, die de definitie van de seconde opnieuw zullen aanscherpen.

Het meten van de tijd begon toen mensen zich bewust werden van relatief trage, maar regelmatige processen, zoals de schijnbare positie van de zon, de maan en de sterren. Daarnaast werden waterklokken, kaarsen en zandlopers gebruikt om tijdsintervallen te bepalen. De eerste mechanische klok, die werkte via vallende gewichten, ontstond aan het einde van de dertiende eeuw. In de zestiende eeuw ontwikkelde men een binnenwerk dat opwindbaar was met een veer, en in 1657 verkreeg Christiaan Huygens een patent op het slingeruurwerk. Aanvankelijk waren mechanische uurwerken prestigeobjecten, maar gaandeweg werden ze kleiner en betaalbaarder en zo verschenen ze in elk huishouden. Met een zakhorloge of polsuurwerk kon iemand meerdere afspraken op een dag inplannen. Zo zorgde de vooruitgang in tijdsmeting er indirect voor dat we het veel drukker kregen. Ondertussen worden al onze klokken, direct of indirect, gesynchroniseerd aan de hand van atoomklokken, maar ook die zijn stilaan voorbijgestreefd. Verwacht wordt dat de volgende generatie klokken zelfs voor een herziening van de definitie van de seconde zal zorgen.

Het lijkt aannemelijk dat het ontwikkelen van steeds preciezere klokken een diep inzicht vereist in de aard van de tijd zelf. De geschiedenis toont echter aan dat tijdsmeting zich gestaag bleef ontwikkelen, ondanks revolutionaire verschuivingen in wat theoretici met ‘tijd’ bedoelen. Newton definieerde de tijd als een absoluut en gelijkmatig continuüm, maar welbeschouwd kunnen onze klokken die absolute tijd helemaal niet afmeten. Klokken werken slechts relatief, steunend op processen waarvan we uit ervaring weten dat ze voldoende gelijkmatig verlopen. In de moderne natuurkunde is de newtoniaanse idee dat er een absoluut ‘nu’ is (overal in het universum) inmiddels verlaten. Sindsdien zijn fundamentele fysische theorieën tijdloos, maar enkele onderzoekers blijven op zoek gaan naar de verloren tijd.

Uurwerk.

Mechanische klokken waren ooit prestige-objecten, gereserveerd voor torens en chique interieurs. (Bron afbeelding.)

(1) Wetenschappelijke tijd

De uitvinding van de slingerklok gebeurde tijdens een periode die we nu de wetenschappelijke revolutie noemen. Door de waarneming van de zogenaamde vaste sterren hadden vroege beschavingen al vastgesteld dat de zonnedag in de loop van het jaar geleidelijk lengt en kort, maar pas met de zeventiende-eeuwse slingerklok kon deze oneffenheid ook zonder astronomische waarnemingen worden aangetoond.

Tijd als substantie bij Newton

Isaac Newton vond deze mijlpaal belangrijk genoeg om hem in 1687 te vermelden in zijn hoofdwerk Philosophiæ Naturalis Principia Mathematica, kortweg de Principia. Aan het begin van dit werk, net voor de befaamde bewegingswetten, heeft Newton een Scholium ingelast. Daarin licht hij onder meer zijn visie op de tijd toe: absolute, ware en wiskundige tijd vloeit uit zichzelf en vanuit de eigen natuur. Newton benadrukt vooral wat tijd volgens hem niet is: tijd is niet relatief, hangt niet af van iets anders. We kunnen tijd niet rechtstreeks ervaren, maar hij wordt wel afgemeten met behulp van tastbare dingen, zoals de grootte van voorwerpen, hun posities, lokale bewegingen en uniforme veranderingen. De meeste mensen verwarren deze maten, zoals dagen, maanden en jaren, met hetgeen waaraan gemeten wordt: de tijd zelf. Ook in het woordenboek Van Dale vinden we nog de uitspraak ‘de klok wijst de tijd aan’, terwijl een fysicus eerder zal zeggen: ‘een klok meet verstreken tijdsduur’.

Huygens.

Newton achtte de slingerklok van Huygens belangrijk genoeg om hem in de Principia te vermelden. (Bron afbeelding.)

Tijd bestaat volgens Newton als een onafhankelijke substantie. Het idee van absolute ruimte en tijd komt al voor in een boek van de Engelse neo-atomist Walter Charleton, dat verscheen toen Newton twaalf jaar was en dat hij als student gelezen heeft. Newton had bovendien theologische redenen om absolute tijd te omarmen. Om de conclusie te vermijden dat God zelf veranderd zou zijn door de materiële wereld te scheppen, moest hij veronderstellen dat ruimte en tijd oneindig en absoluut zijn – emanaties van een alomtegenwoordige en alwetende God. In de Principia vermeldt Newton echter geen theologische motieven, maar geeft hij louter empirische argumenten.

Tijd als relaties bij Leibniz

Tijdgenoot Gottfried Wilhelm Leibniz was echter niet overtuigd door Newtons empirische argumenten voor absolute ruimte en tijd. Volgens hem was tijd enkel gedefinieerd via temporele relaties tussen materiële voorwerpen in het universum: dergelijke relaties vereisen geen absolute tijd en in een leeg universum zou er ook geen tijd zijn. De absolute tijd en ruimte van Newton zijn zelf niet waarneembaar, wat op zich nog geen bezwaar was voor Leibniz, maar kwalijker vond hij dat ze ook geen observeerbare effecten hadden. Newton wees onder andere op het gedrag van water in een draaiende emmer, dat hoger staat aan de randen, maar zijn voorbeelden tonen in feite alleen aan dat absolute versnelling bestaat. Er leek geen gulden middenweg te zijn tussen de opvattingen van Newton en Leibniz: absolute versnelling behouden zonder absolute tijd en ruimte te veronderstellen leek onmogelijk. Daar komen we nog op terug.

(2) Een seconde uit de oude doos

Zelfs als we een absolute tijd veronderstellen, zoals Newton deed, betekent dit nog niet dat we die ook ergens kunnen aflezen. Om een tijdsduur te bepalen vergelijken we die met processen waarvan we weten dat ze zeer regelmatig zijn, zonder ooit de garantie te krijgen dat ze absoluut regelmatig zijn. Zelfs de seconde, die in het dagelijkse leven misschien een absolute standaard lijkt, kan alleen relatief worden gedefinieerd. Het Internationale Stelsel van Eenheden (SI) legt sinds 1960 uniforme standaardeenheden vast voor natuurkundige grootheden. De SI-eenheid van tijd is de seconde, maar de definitie ervan is sinds de eerste editie wel veranderd, door evoluties in natuurkundige kennis en technisch vernuft. Tot 1967 werd de seconde gedefinieerd als de duur van een gemiddelde zonnedag gedeeld door 24 x 60 x 60. Door variaties in de duur van het jaar en dus de gemiddelde zonnedag was die definitie echter variabel en dus niet optimaal. Sinds 1967 hanteert het SI dan ook een andere definitie: een seconde is de tijdsduur waarin de straling geabsorbeerd door en uitgestraald door een cesiumatoom 9 192 631 770 periodes doorloopt. Die definitie is alleen praktisch zinvol doordat we intussen voldoende nauwkeurige en reproduceerbare middelen hebben om dit te bepalen: cesiumklokken. De verwachting is bovendien dat er binnenkort nog preciezere en betrouwbaardere klokken voorhanden zullen zijn, waardoor de definitie van de seconde andermaal aangescherpt kan worden.

Nanoseconden.

Een bussel netonseconden. Computerwetenschapper en Amerikaans legerofficier Grace Hopper had vaak stukken van 30 cm ouderwetse telefoonkabel op zak: de afstand waar licht (in vacuüm) in circa één nanoseconde langs flitst. (Bron afbeelding.)

Eerste digitale klok had analoge wijzerplaat

De grootste winst in nauwkeurigheid kan worden behaald door een trilling te gebruiken met een drastisch hogere frequentie. Sneller getik correspondeert met kortere periodes en veelal ook met uitwijkingen op een kleinere schaal, wat telkens voor nieuwe technische uitdagingen zorgt. Eens er een werkend prototype is, kan het worden geoptimaliseerd. Het is zaak om beïnvloeding door de omgeving te minimaliseren, bijvoorbeeld door voor een constante, lage temperatuur te zorgen. Bovendien kan de statistische fout worden verlaagd door het gemiddelde tijdsverloop van meerdere klokken te bepalen.

Laat ons, alvorens de hightech in te duiken, nog even terugkeren naar de essentie: hoe kunnen mechanische klokken worden gebruikt om de hoeveelheid verstreken tijd te meten? Dit gebeurt doordat ze gebruikmaken van een voldoende regelmatige, mechanische beweging, bijvoorbeeld een slingerbeweging, en omdat ze een binnenwerk bevatten dat periodes ‘telt’ of veelvouden ervan aangeeft op een wijzerplaat. Een belangrijke tussenstap tussen mechanische klokken en hedendaagse atoomklokken was het kwartsuurwerk, dat voor het eerst ontwikkeld werd in 1927 in de Bell Laboratoria. Hierbij wordt de regelmatige beweging geleverd door een kwartskristal, dat een typische frequentie heeft rond 33 kHz: dat betekent dat het kristal per seconde circa 33 000 periodes doorloopt. Kwarts is piëzo-elektrisch, waardoor de mechanische trillingen tot even snelle elektrische variaties leiden, die uitgelezen worden met een elektronisch circuit. Alle kwartshorloges zijn dus eigenlijk digitaal, ongeacht of ze een analoge wijzerplaat of een lcd-scherm hebben.

Cesium-fonteinklokken

De volgende stap was de ontwikkeling van een atoomklok op basis van cesium: dit gebeurde voor het eerst in 1955. De nauwkeurigheid nam aanvankelijk elk decennium met een factor tien toe. De huidige nauwkeurigheid van deze atoomklokken is zo goed dat de afwijking slechts 0,02 nanoseconden per dag bedraagt. Dat correspondeert met 30 seconden in 4,5 miljard jaar, de huidige leeftijd van de aarde. De meest courante atoomklokken gebruiken de isotoop cesium-133. Ze detecteren de straling die correspondeert met de overgang tussen twee specifieke energieniveaus. De frequentie van die microgolfstraling wordt gebruikt voor de huidige definitie van de seconde. Cesiumklokken gebruiken vele cesiumatomen om de statistische onzekerheid te verlagen. Door kleine storingen treden er echter dopplereffecten op, die de frequentie beïnvloeden en de klok minder nauwkeurig maken. In de jaren 1990 werd een oplossing gevonden door een fonteinklok te maken: een laser stuurt gekoelde cesiumatomen omhoog, die vervolgens weer neervallen. De dopplereffecten tijdens de op- en neergaande beweging vallen zo tegen elkaar weg. Het is een netwerk van dergelijke cesium-fonteinklokken dat gebruikt wordt om de universele standaardtijd te bepalen. Een nauwkeurige universele tijd is nodig voor synchronisatie van gps- en telecommunicatiesatellieten en internetservers, maar ook voor telescopen en andere fundamentele onderzoeksdoeleinden.

Optische roosterklokken

Bij de huidige generatie atoomklokken is er nog weinig ruimte voor verbetering van de nauwkeurigheid en reproduceerbaarheid omdat men op fundamentele beperkingen stuit. Daarom wordt er nu onderzoek gedaan naar alternatieven die deze beperkingen kunnen omzeilen. Dat gebeurt onder andere bovenop de meridiaan van Parijs: daar staat namelijk het Observatorium van Parijs. Jérôme Lodewyck (zie onderaan: bron 1) staat er aan het hoofd van het laboratorium voor referentiesystemen van tijd en ruimte, waar zijn team aan een nieuwe generatie atoomklokken werkt. Terwijl cesiumklokken met microgolven worden aangestuurd en uitgelezen, doet men nu onderzoek naar atoomklokken die werken met laserstraling in of nabij het zichtbare deel van het elektromagnetische spectrum. Dit worden optische klokken genoemd. Rond 2008 werden op basis van één aluminium-ion of één kwik-ion de eerste optische klokken gemaakt, waarbij de nauwkeurigheid van cesiumklokken met een grootteorde overtroffen werd. Men tracht optische atoomklokken verder te verbeteren door duizenden atomen of ionen tegelijk te meten. Daartoe worden ze gefixeerd in een staande golf van krachtig laserlicht, waarbij de atomen als eieren in een eierdoosje vallen. Klokken die volgens dit principe werken, worden in het Engels ‘optical-lattice clocks’ (OLC’s) genoemd: optische-roosterklokken dus. Hiervoor worden doorgaans strontium- of ytterbiumatomen gebruikt, die een bruikbare frequentie hebben in het nabije infrarood.

Een probleem bij het maken van de nauwkeurigste klok ooit is dat er geen externe referentie bestaat om de nieuwe klok mee te vergelijken. Pas toen de Parijse groep in 2011 een tweede strontium-OLC gebouwd had, werden enkele problemen duidelijk. Zo bleek dat er zich statische elektriciteit opbouwde op de vensters van de vacuümkamer, wat intussen opgelost is door die ramen met uv-licht te bestralen. Daarna liepen beide OLC’s vrijwel perfect synchroon, met een verschil van de orde 10^-16. De uitlezing van deze klokken vroeg nieuwe ontwikkelingen, aangezien elektronische circuits de vereiste frequentie niet halen. Om een wereldwijd netwerk van deze klokken te maken, wordt er gewerkt aan een bekabeld alternatief voor de huidige satellietverbinding. Er loopt ook onderzoek naar OLC’s op basis van kwik en magnesium die nog hogere frequenties hebben, maar waarvoor uv-lasers nodig zijn, die voorlopig nog niet alle vereiste karakteristieken halen. En voor al die optische klokken zijn ook verdere verbeteringen in koeltechnieken nodig, onder meer om de lasercaviteit en dus de golflengte zo stabiel mogelijk te houden. De beoogde afwijking van OLC’s is slechts één seconde in 13,8 miljard jaar, de huidige leeftijd van het heelal. Eens die technologie voldoende reproduceerbaar is, wordt verwacht dat de definitie van de seconde hieraan zal worden aangepast. Fysici kijken vooral reikhalzend uit naar nieuwe mogelijkheden om fundamentele vragen te onderzoeken, zoals de vraag of ‘natuurconstanten’, waaronder de fijnstructuurconstante, minuscule variaties vertonen. En voor nog hogere precisie, beter dan 10-18, wordt er gedacht om trillingen in kernen te gebruiken, in plaats van elektronische overgangen, maar dit is echt wel toekomstmuziek.

Tegeltje.

Wetenschappelijk verantwoorde tegeltjeswijsheid.

(3) Tijd bevroren in het blokuniversum

Tijdens alle inspanningen om tijdsduur steeds nauwkeuriger te meten ging de dimensie tijd zelf in de hedendaagse fysica een minder centrale rol spelen dan tijdens de wetenschappelijke revolutie.

Vierdimensionale ruimtetijd

Nadat Albert Einstein zijn speciale relativiteitstheorie had gepubliceerd gaf Hermann Minkowski er in 1908 een elegante herformulering van in termen van een vierdimensionale voorstelling: de ruimtetijd, door filosofen soms blokuniversum genoemd. De vierdimensionale ruimtetijd is ook belangrijk in de algemene relativiteitstheorie, waarbij kromming van de ruimtetijd samenhangt met gravitatie, maar dat is voor dit verhaal van minder belang.

De speciale relativiteitstheorie suggereert een bepaalde visie op het concept tijd, die filosofen eternalisme noemen. Daarin gaat de tijd niet voorbij en zijn verleden, heden en toekomst even echt. Uit Einsteins speciale relativiteitstheorie blijkt namelijk dat gelijktijdigheid afhangt van de bewegingstoestand van de waarnemer en dus relatief is: er is geen universeel ‘nu’ en dit zet de intuïtief aannemelijke visie dat alleen het heden echt is (presentisme) onder druk. Denkend aan een overleden vriend scheen Einstein troost te vinden in het eternalisme. Hij noemde het onderscheid tussen verleden, heden en toekomst slechts een hardnekkige illusie.

Neo-newtoniaans model

Eens je met het blokuniversum vertrouwd bent, vergt het weinig fantasie om ook de oudere, newtoniaanse fysica in termen van een vierdimensionale ruimtetijd te herformuleren. Met iets meer inspanning kun je zo zelfs een onvolkomenheid van de newtoniaanse fysica wegwerken. De Franse wiskundige Élie Cartan stelde in de jaren 1920 een neonewtoniaanse ruimtetijd voor. In tegenstelling tot de speciale relativiteitstheorie heeft de ruimtetijd van Cartan wel absolute gelijktijdigheid en geen maximumsnelheid. En net als de ruimtetijd van de algemene relativiteitstheorie is de cartaniaanse ruimtetijd gekromd. In deze neonewtoniaanse oplossing worden alleen versnellingen als absoluut voorgesteld, maar tijdstippen of snelheden niet. Dit lijkt een elegante oplossing die Leibniz had kunnen bekoren, maar zeker is dat niet, want ook bij Leibniz speelden er metafysische en theologische overwegingen mee.

Smolin op zoek naar de verloren tijd

Wel zeker is dat een aantal hedendaagse natuurkundigen ontevreden is over de bijrol die tijd lijkt te spelen in de hedendaagse theoretische fysica – een rol die in schril contrast staat met die in het dagelijkse leven en in de technologie, die al blijkt uit de geschetste zoektocht naar een nieuwe generatie klokken. Lee Smolin is zo’n theoreet die op zoek is naar de verloren tijd. Net als vele collega’s werkt hij aan een schijnbaar ongerelateerd vraagstuk uit de theoretische fysica: hoe is quantummechanica te verzoenen met gravitatie? Smolin werkt aan loop quantum gravity, als poging om deze vraag op te lossen. Daarnaast schrijft hij populariserende boeken over fysica. In zijn boek Time Reborn uit 2013 (zie onderaan: bron 2) bindt hij de strijd aan met het eternalisme en roept hij op tot een wedergeboorte van de tijd in de fysica. In het eerste deel wordt duidelijk dat voor Smolin het probleem overigens niet begonnen is bij Einsteins blokuniversum, maar al bij Galileo Galilei en Newton, die aantoonden dat wiskundige modellen universeel en eeuwig toepasbaar zijn. Bovendien is de newtoniaanse mechanica perfect deterministisch en kan uit de huidige toestand in principe elke toestand in het verleden of toekomst worden gereconstrueerd.

De wiskundige modellen die in de fysica gebruikt worden, mogen dan ‘tijdloos’ zijn, dat neemt volgens Smolin niet weg dat tijd wel degelijk een fundamenteel aspect is van onze realiteit. We dreigen volgens hem de kaart met het land te verwarren: eigenschappen van de theorie of het model zijn niet noodzakelijk ook die van de werkelijkheid. In het tweede deel formuleert Smolin echter zijn veel speculatievere voorstel: dat de natuurwetten zelf niet tijdloos zijn, maar kunnen evolueren. Hiertoe past hij de idee van natuurlijke selectie toe op universa, die zich zouden kunnen voortplanten indien ze via zwarte gaten nieuwe universa voortbrengen. Mij lijkt dit voorstel echter niet zo goed te passen bij het eerder gemelde probleem dat tijd in de fysica op de achtergrond is beland. Om te kunnen stellen dat universa zich in de tijd voortplanten is er namelijk een soort metatijd nodig. Het tijdsverloop binnen een universum, pakweg het onze, volstaat hier niet voor.

Smolin suggereert ook dat alomtegenwoordige quantumverstrengeling toch een universeel en waarnemersonafhankelijk ‘nu’ zou opleveren: dat is even speculatief, maar het biedt wel een gerichter antwoord. Smolins speculatieve metatijd, waarin universa geboren zouden worden, is in ieder geval niet wat we afmeten met de klokken in ons universum. Wat onze klokken wél meten, dat blijft moeilijk te verwoorden, juist omdat de tijd niet weg te denken is.

Bronnen

  • Jérôme Lodewyck, ‘An Even Better Atomic Clock’, in: IEEE Spectrum, 2014, 51 (10), 42-64.
  • Lee Smolin, Time Reborn: From the Crisis in Physics to the Future of the Universe. (Houghton Mifflin Harcourt, 2013).

Alle tijd van de wereld

We hebben het zo druk dat we vergeten dat de universele standaardtijd een menselijk construct is. Met eenvoudige middelen kunnen we de afwijking tussen onze klok en de ware zonnetijd zichtbaar maken.

Deze column is eerder verschenen in het juni-nummer van Eos en op de Eos-website.

Als je een jaar lang elke dag om 12 uur de positie van de zon vastlegt, ontstaat uiteindelijk een achtfiguur. Dat patroon heet het analemma van de zon.. In de zomer komt de zon hoger boven de horizon dan in de winter: dat correspondeert met de hoogteverschillen in het analemma. Maar van waar komt de afwijking naar het oosten en het westen? Die is het gevolg van de zogeheten tijdsvereffening, die het verschil tussen de zonnetijd en de kloktijd aanduidt. Die ingreep voerden onze voorouders in toen ze merkten dat niet elke zonnedag even lang was.

De eerste analemma’s maakte men door de schaduw van een stok op een vast tijdstip te noteren. Later deden wetenschappers dat met meervoudig belichte foto’s. Tegenwoordig kan je digitale foto’s in elkaar voegen (zie foto hieronder voor een simulatie). Die hedendaagse analemma’s worden gretig gedeeld op sociale media (bijvoorbeeld hier).

Analemma.

Gesimuleerde fotomontage van een analemma in Duitsland. (Bron.)

De universele standaardtijd waarop we onze gsm’s, keukenklokjes en uiteindelijk onze levens gelijkzetten, is alomtegenwoordig. We hebben het er zo druk mee dat we gemakkelijk vergeten dat we die tijd zelf hebben geconstrueerd. Daardoor kan de variatie in de ware zonnetijd, die je met eenvoudige hulpmiddelen kan vaststellen, ons opnieuw verbazen.

Een zonnedag duurt gemiddeld 24 uur. Dat is de tijd die we in ons halfrond meten tussen de eerste keer dat de zon schijnbaar pal in het zuiden staat en de eerstvolgende keer dat we ze op die positie aantreffen. Anders gezegd: een zonnedag is de tijdspanne tussen twee momenten waarop een zonnewijzer 12 uur aangeeft.

Een zonnewijzer kan doorheen het jaar meer dan een kwartier voor- of achterlopen op de klok.

In de loop van een jaar kan de duur van een zonnedag tot wel 20 seconden variëren. De dagelijkse variaties cumuleren tot meer dan een kwartier verschil tussen klok en zonnewijzer. Om die afwijkingen vast te stellen, hebben we een externe standaard nodig. De Babyloniërs slaagden daarin door de ware zonnetijd te vergelijken met de sterrentijd, die ze nauwkeuriger konden aflezen dan hun waterklokken. Pas veel later werden de aardse middelen preciezer.

Met die standaarden kan je de variaties in de zonnetijd corrigeren en zo een minder veranderlijke tijdseenheid overhouden. Die tijdsvereffening leidt tot een middelbare tijd waarbij elke dag per definitie exact 24 uur duurt.

Intussen ontdekten wetenschappers ook wat het verschil veroorzaakt tussen de zonnetijd en die middelbare tijd. De eerste oorzaak is dat de baan van de aarde rond de zon niet perfect cirkelvormig is. (Washington Post publiceerde een verhelderende animatie die de elliptische aardbaan aan posities in het analemma relateert.) De tweede is dat de aardas niet loodrecht staat op het vlak waarin de aarde om de zon draait.

Naast waterklokken gebruikten mensen van oudsher kaarsen en zandlopers om tijdsintervallen te bepalen. Aan het einde van de 13de eeuw verscheen het eerste mechanische uurwerk, dat werkte via vallende gewichten. In de 16de eeuw maakte men een binnenwerk dat je kon opwinden met een veer. En in 1657 verkreeg Christiaan Huygens een patent op het slingeruurwerk. Isaac Newton roemde het als het eerste middel op aarde om de tijd op een voldoende uniforme manier af te tikken.

Aanvankelijk waren mechanische klokken prestigeobjecten, voorbehouden voor torens en chique salons, maar gaandeweg werden ze kleiner en betaalbaarder en zo verschenen ze in elk huishouden. Met een zakhorloge of polsuurwerk kon iemand veel meer afspraken op één dag plannen. Ten slotte volgde het eerste elektronische uurwerk: het kwartshorloge.

Al onze klokken worden nu, direct of indirect, gesynchroniseerd via een netwerk van atoomklokken. De huidige atoomklokken gebruiken de microgolfstraling van cesium-133-atomen, die een welbepaald aantal keren per seconde trillen. Sinds 1967 is de definitie van de seconde hier ook op gebaseerd. In het Observatorium van Parijs en enkele andere laboratoria onderzoeken wetenschappers ondertussen al weer andere atomen waarvan de straling dichter bij het zichtbare gebied ligt. Naar verwachting staan die optische klokken binnen enkele jaren voldoende op punt om er de universele standaardtijd en een aangescherpte definitie van de seconde op te baseren.

Onze tijdsmeting heeft al een hele weg afgelegd. Het begon met de schijnbare positie van de zon, de maan en de sterren:  relatief trage, maar regelmatige processen op grote schaal. Geleidelijk lukte het om de tijd af te meten met louter aardse middelen. Sinds vorige eeuw zoeken we die steeds grotere precisie in de kleine en snelle binnenwereld van atomen en in de verre toekomst misschien zelfs in de atoomkern. Of we daardoor ook meer tijd krijgen valt te betwijfelen.

PS: Analemma’s bepalen aan de hand van schaduwen is nog steeds een leuk experiment, bijvoorbeeld voor leerkrachten fysica: zie deze Engelstalige tekst van Robert E. Parkin. En wie op zoek is naar extra informatie met formules om de vorm van het analemma voor eender welke positie en tijdstip te bepalen verwijs ik naar deze Engelstalige tekst van Helmer Aslaksen en Shin Yeow Teo.

Is nu ook straks nog nu?

ikhebeenvraag.beAan het einde van de zomer beantwoordde ik onderstaande vraag van de elfjarige Eva op ikhebeenvraag.be:

Is nu ook straks nog nu? Als je straks zegt dat je nu iets doet, dan is dat toch ook nu? Of als je nu zegt ik ga NU iets doen dan kan je toch zeggen als ik straks zeg nu dan is het ook nu dus bedoel ik eigenlijk dat ik het straks doe. Begrijpt u mijn vraag een beetje?

Ik had mijn antwoord hier nog niet gedeeld, dus bij dezen!

Dag Eva,

Leuk, een filosofische vraag! Ja, ik begrijp je verwondering hierover.

~

Er zijn een aantal bijzondere woorden in onze taal:

  • Ik ben altijd ik.
  • Ik ben altijd hier.
  • Voor mij is het altijd nu.

Met deze woorden kunnen we de zin maken: “Ik ben nu hier.” Dit is telkens waar als iemand de zin uitspreekt! Toch blijft het niet altijd nu. Dat zal ik hieronder verder proberen uitleggen.

(meer…)

Komt de toekomst naar ons toe of gaan wij naar de toekomst?

ikhebeenvraag.beHet korte antwoord is nee. Hieronder de langere toelichting evenals het antwoord op een andere vraag over tijd. Beide antwoorden schreef ik voor de website “Ik heb een vraag” (mijn nieuwe hobby).

~

Fulkan vroeg:

“Gaan wij naar de toekomst of komt de toekomst naar ons?

Hoe kan ik mij tijd het best voorstellen? Als een tunnel waarin wij voortbewegen in de richting van de toekomst? Of eerder als een tunnel waarin we stilstaan, en de toekomst naar ons komt? Wat is tijd?”

Mijn antwoord aan Fulkan (link).

Beste Fulkan,

In het gewone taalgebruik hebben we allerlei suggestieve uitdrukkingen over tijd: “de tijd stroomt”, “de tijd gaat voorbij”, … Hierdoor zou je kunnen denken dat de toekomst naar ons komt. Anderzijds is het duidelijk dat wij het zijn die veranderen in de tijd. Dus misschien stromen we mee met de tijd en komt de toekomst wel naar ons?

Helaas blijken beide opties onhoudbaar:

  • Het idee dat de toekomst naar ons komt (of dat tijd voorbijgaat) is problematisch. We zouden dan namelijk moeten kunnen zeggen met welke snelheid de toekomst nadert. Je zou kunnen proberen antwoorden met “één seconde per seconde”, of “één uur per uur”, maar als je dit uitwerkt krijg je gewoon het getal 1, zonder eenheid: dat is helemaal geen snelheid. Het vergelijken van de tijd met een rivier die voorbijstroomt is dus enkel een metafoor.
  • Het idee dat wij naar de toekomst gaan is eveneens problematisch. (We kunnen opnieuw de vraag stellen naar snelheid, met hetzelfde probleem.) We kunnen wel door de ruimte bewegen en dat kunnen we enkel doen als er ook een tijdsverloop is. (Als ik 0 seconden krijg, kan ik me niet verplaatsen.) Vandaar het idee dat we meebewegen met de tijd, maar dat we naar de toekomst gaan is wellicht ook enkel beeldspraak (een analogie met de manier waarop we door de ruimte kunnen bewegen).

Mij spreekt het beeld dat we met ons gezicht naar het verleden gericht achterwaarts naar de toekomst toe vallen, omdat we ons het verleden herinneren en de toekomst niet (wat te maken heeft met de pijl van de tijd). Maar het is ook niet meer dan dat: een mooie metafoor.

Je stelt de vraag binnen de rubriek Fysica, maar – vreemd genoeg misschien – zegt deze wetenschap vrij weinig over wat tijd is en nog minder over onze subjectieve ervaring ervan. In de meeste takken van de fysica wordt tijd gebruikt als variabele, maar niet echt onderzocht als onderwerp.

Een belangrijke uitzondering hierop is de speciale en de algemene relativiteitstheorie. Hieruit is een beeld over tijd en ruimte ontstaan als een vierdimensionaal geheel – ‘ruimtetijd’ genoemd. Alle gebeurtenissen in het universum hebben vier coördinaten in de ruimtetijd en als je dit ‘blokuniversum‘ van buitenaf zou kunnen beschouwen (vanuit het niets en vanuit nooit, wat natuurlijk niet echt kan), dan zou je tijd niet zien stromen en evenmin iets anders zien bewegen in de tijd. Momenten zouden naast elkaar bestaan, net zoals ruimtelijke punten.

Om dit te relateren aan onze ervaring binnen het blokuniversum is er een filosofische theorie voorgesteld die de spotlichttheorie van de tijd wordt genoemd. Als we in het donker onder een spot staan, kunnen we maar een kleine afstand van ons af zien. Net zo kunnen we maar een zeer klein interval van de tijd waarnemen. Deze theorie laat echter onbeantwoord waarom dit zo zou zijn. Als het ‘lampje’ met ons meebeweegt in de tijd, lijkt er alsnog iets te bewegen in het blokuniversum, wat ingaat tegen de bedoeling ervan. Uiteindelijk is het dus niet duidelijk of de spotlichttheorie van de tijd iets oplost, of enkel meer problemen opwerpt.

Er zijn fysische theorieën die proberen tijd te verklaren als iets dat kan ontstaan uit een onderliggende werkelijkheid zonder tijd, maar dit is nog in volle ontwikkeling. Het is dus te vroeg om een sluitend antwoord te geven op je laatste vraag “Wat is tijd?” Voor iets dat we dagelijks ervaren weten we er bijzonder weinig van! Anderzijds zou je je kunnen afvragen: als vissen wetenschap hadden, hoe lang het dan zou duren voor ze zouden ontdekken dat er zoiets als water is? Juist omdat het zo alomtegenwoordig is en we niet zonder kunnen, is het moeilijk om over tijd na te denken en er experimenten mee te doen.

Misschien zal de toekomst het ons leren…

Vriendelijke groeten,
Sylvia

~

Jonathan vroeg:

“In de theorie van het blokuniversum wordt gesteld dat verleden, heden en toekomst bestaan. Wat is een correcte interpretatie hiervan?

Omdat de informatie op het internet in dit verband ofwel te technisch en wiskundig is ofwel door populaire bronnen wordt gebruikt voor de meest wilde theorieën, slaag ik er maar niet in om een verstaanbare en tegelijk betrouwbare interpretatie van deze theorie te vinden… Mijn basisvraag is de volgende: de stelling dat verleden, heden en toekomst bestaan, geldt die volgens de aanhangers van het blokuniversum alleen op een algemeen universeel niveau, meer bepaald vanuit de interpretatie dat er geen universele tijd bestaat en dat er vanuit het standpunt van 2 verschillende waarnemers met verschillende snelheden zeer moeilijk over gelijktijdigheid (en bijgevolg eenzelfde indeling in verleden, heden en toekomst) kan worden gesproken? Of geldt dit ook vanuit het perspectief van 1 enkele waarnemer? vb. het ervaren van mijn geboorte, mijn huwelijk, mijn overlijden door enkel en alleen mezelf > op het moment dat ik mijn huwelijk ervaar, zijn mijn geboorte en mijn overlijden volgens de theorie dan in dezelfde vorm aanwezig in het blokuniversum? En wordt dit dan beschouwd als 3 chronologische momenten van 1 object, of als 3 momenten van 3 objecten = onze identiteit als illusie. Alvast bedankt voor de opheldering :-)”

Mijn antwoord aan Jonathan (link).

Blokje tijd.

Afbeelding door BRYAN CHRISTIE uit Scientific American.

Beste Jonathan,

Het blokuniversum staat voor de vier-dimensionele ruimtetijd en wordt als universeel gezien (dus niet waarnemer-gebonden). Hierin kunnen we voorwerpen voorstellen die gedurende zekere tijd bestaan en zich eventueel ook ruimtelijk verplaatsen; dit wordt dan een ruimtetijd-worm genoemd.

Op het bijgevoegde plaatje zie je een illustratie. Hierbij worden voor de eenvoud 2 ipv 3 ruimtelijke dimensies getoond. Verder doen we even of de aarde op een vaste ruimtelijke positie staat (wat natuurlijk niet zo is), terwijl de maan rond de aarde draait: dit zorgt voor een spiraalvormige ruimtetijd-worm voor de maan.

Deze voorstelling kan je ook op mensen toepassen. Een mens in het blokuniversum correspondeert met een ‘worm’ die begint bij de geboorte en eindigt bij het overlijden.

Filosofisch kan je nu verschillende posities innemen over de vraag wat een persoon dan is: zijn we de hele ruimtetijd-worm (en is er dus op elk moment maar een deel van ons aanwezig) of zijn we op ieder moment een andere doorsnede van zo’n ruimtetijd-worm (wat dichter aansluit ben ons taalgebruik: “hier ben ik”). Dat is een leuke discussie, maar hoort dan eerder in de rubriek Wijsbegeerte en niet onder Fysica, waar je vraag nu onder gerubriceerd is.

Specifiek vraag je nog “op het moment dat ik mijn huwelijk ervaar, zijn mijn geboorte en mijn overlijden volgens de theorie dan in dezelfde vorm aanwezig in het blokuniversum?” Die gebeurtenissen corresponderen inderdaad met onveranderlijke gebieden in het blokuniversum. Nu kan het lijken of ze ’tegelijk’ gebeuren vanuit het perspectief van het blokuniversum (wat paradoxaal lijkt), maar die conclusie hoef je niet noodzakelijk te trekken. Als je je het blokuniversum als geheel voorstelt, dan kijk je namelijk vanuit een perspectief dat buiten de ruimtetijd van ons eigen universum valt. Dit is een (denkbeeldig) perspectief vanuit nergens en nooit (buiten de gewone tijd).

Wat de chronologie betreft: voor de persoon zelf wordt de ervaren chronologie bepaald door middel van de eigentijd (tijd horend bij een meebewegend assenstelsel); voor een snelbewegende waarnemer is het wel mogelijk om gebeurtenissen in het leven van een ander persoon in een andere volgorde te zien. Verschillende waarnemers zullen het blokuniversum namelijk in verschillende richtingen ‘in schijfjes’ snijden om aan te duiden welke gebeurtenissen volgens hen (d.w.z. vanuit een met hun meebewegend assenstelsel) gelijktijdig zijn.

Anderzijds zullen alle waarnemers bij heel wat gebeurtenissen het wél eens zijn over de chronologie (doordat het oppervlak van lichtkegels absoluut is). Om hier meer over te weten, moet je op zoek naar informatie over tijd-, ruimte-, en lichtachtige intervallen (hier bijvoorbeeld op de Engelstalige Wikipedia).

Vriendelijke groeten,
Sylvia

De Weg van de Veger

In minder dan twee weken tijd legde mijn schoonvader een hele oprit aan rond ons huis. (Waarvoor onze grote dank!) Daarna moest er enkel nog zand in de voegen worden geveegd. Ik vond het prettig om elke avond een uurtje te vegen: een vorm van actieve ontspanning. Een meditatief moment om rustig na te denken is altijd welkom voor een filosoof.

Als ik achteraf mijn ogen sloot zag ik nog steeds zand in groeven verdwijnen. Dit soort dagdromen van bodemloze putten past wonderwel bij de paradoxen waarover ik graag nadenk en waarbij soms ook alle zekere grond onder onze voeten lijkt weg te zakken. Natuurlijk is wegstromend zand ook een bekende metafoor voor het verstrijken van de tijd (in een zandloper) en op die manier is er een evident verband met onze cursus over filosofie van de tijd. Ook iets om rustig te laten bezinken tijdens het vegen.

Toen ik tegen Danny zei dat ik mijn zandveegtaak eigenlijk wel prettig vond, moest hij lachen: dan wist hij wel een boek dat ik eens moest lezen. Hij had het over Thief of Time (vertaald als De dief van tijd) van Terry Pratchett. Daarin komt er namelijk een filosoof voor die als straatveger werkt omdat hij zo meer tijd heeft om na te denken. Eindelijk mijn alter ego gevonden! :-)

Lu-Tze heet de man (of Lou-Tzi in de Nederlandse vertaling, een verwijzing alleszins naar Loazi), maar hij wordt the Sweeper of de Veger genoemd. Hij is een meester in de gevechtskunst Déjà-Fu: het gevoel dat je al eens eerder precies zo op je hoofd bent getimmerd. Hierbij bewegen de ledematen van de aanvaller niet enkel in de ruimte, maar ook (achterwaards) in de tijd, waardoor de ander het effect voelt van eerdere klappen. Geen slechte mascotte dus voor onze cursus waarin we het ook over tijdreizen gaan hebben. Een studie naar de verpersoonlijking van Tijd bij Pratchett zou trouwens een cursus op zich kunnen zijn! ;-)

De Veger spreekt in raadsels die aan zen-boeddhistische koans doen denken. Niemand let op hem, want hij is maar een straatveger. En ondertussen is hij meester dan de tijd (één van de Monniken der Tijd, om precies te zijn). Ik mag hem wel, zo veel is duidelijk.

De Veger.

De Veger. (Bron afbeelding: Karla Cervantes.)

Filosofie van de tijd: gloednieuwe cursus!

About time!Misschien viel het je al op, dat er bovenaan mijn blog een tabblad is bijgekomen met als titel “Course: Philosophy of Time“. Volgende week start er namelijk een gloednieuwe cursus over filosofie van de tijd, die ik samen met Pieter Thyssen zal doceren.

We schreven samen een Engelstalig blogbericht om de cursus aan te kondigen, die Pieter op zijn blog The Life of Psi plaatste en dat ik hieronder plaats.

~

It’s About Time!

KU Leuven Introduces a Mind-Boggling Course on the Nature of Time

“We’re all time travellers!” quipped Carl Sagan.

After all, we’re all moving into the future at a steady rate of one second per second. Agreed, it sounds like an obvious platitude, but does Sagan’s quote even make sense? What does it actually mean for time to pass at a rate of one second per second? And are we really moving into the future, or is the future somehow ‘moving into us’? What is time anyways?

Calvin and Hobbes.

Calvin and Hobbes.

Humbled and perplexed by the mystery of time, the medieval theologian and philosopher St. Augustine of Hippo famously answered: “If no one asks me, I know; but if I wanted to explain it to him who asks, I plainly do not know!”

Sixteen centuries later, anno 2015, scientists and philosophers alike are still hard-pressed to tell us what exactly time is. But this, of course, doesn’t mean there hasn’t been any progress since the dark ages!

Clearly then, the time is ripe to take stock of our current understanding about the nature of time and why it matters. The upcoming semester turns out to be especially appropriate to do so, for three reasons:

First, on September 30, the Dutch time travel movie Terug naar morgen will be released. The director, Lukas Bossuyt, studied engineering at KU Leuven and decided to shoot his first movie here in Leuven and in the physics labs in Heverlee!

Second, on October 21, at 4:29 PM to be precise, Marty McFly will pay us a visit from the past. At least, that’s what he did in Back to the Future II. So keep your eyes open for that DeLorean!

And third, on November 25, the world will celebrate the centennial of Einstein’s theory of general relativity. If only we could go back to November 1915 and witness Einstein’s speech at the Prussian Academy of Science in which he first showcased his field equations!

For all of these reasons, and because we are both fascinated by time, we are organising a brand new course on the nature of time, open to all Ma-students and starting September 2015! But more on that below.
(meer…)