Wet van de waterkans

Dit stukje is als column verschenen in Eos.
(Jaargang 32, nummer 2.)

Een langere versie van deze tekst vind je hier.

En een gedichtje dat erbij past.

Waterkans.In Vlaanderen beschikken we over een mooi woord voor een uiterst kleine kans: waterkans. Kansloos wil zeggen dat de kans helemaal onbestaande is. Volgens het principe van Cournot zijn waterkansjes in de praktijk kansloos: een op voorhand gespecifieerde gebeurtenis waarvan de kans zeer klein is zal niet gebeuren. Dit principe is vernoemd naar Antoine Augustin Cournot die in 1843 inderdaad een dergelijke redenering publiceerde.

Volgens de eponiemenwet van Stigler wordt geen enkele ontdekking naar de oorspronkelijke ontdekker vernoemd. En inderdaad: het principe van Cournot is al terug te vinden in de geschriften van eerdere auteurs, zoals Jakob Bernoulli. In “De kunst van het gissen” (postuum verschenen in 1713) bewees Bernoulli als eerste een speciaal geval van de wet van de grote aantallen. Hij interpreteerde zijn wiskundige resultaat al in termen van praktische zekerheid.

Later ging de Franse wiskundige Émile Borel zo ver om in zijn boek “De kansen en het leven” uit 1943 te schrijven: “Het principe dat een gebeurtenis met een zeer kleine kans niet zal gebeuren is de enige wet van de kans.” Borel heeft ook een aantal vuistregels opgesteld voor welke gebeurtenissen men in welke context als onmogelijk kan beschouwen. Volgens hem zijn kansen kleiner dan één miljoenste (10-6) onmogelijk op de menselijke schaal en kansen kleiner dan één honderd-octiljoenste (10-50) onmogelijk op de kosmische schaal.

Het principe van Cournot lijkt zeer aannemelijk. De kans dat een op voorhand gespecifieerde combinatie van zes verschillende getallen tussen 1 en 45 wint bij de volgende lottotrekking is kleiner dan één op acht miljoen (ongeveer 0,000 012 %). Volgens Borels vuistregels is de hoofdprijs winnen met de Belgische lotto dus onmogelijk op de menselijke schaal. Ook het principe van Cournot zegt dat onze combinatie niet zal winnen.

Waterkans.Nochtans worden we voortdurend geconfronteerd met gebeurtenissen waaraan we op voorhand niet meer dan een waterkans hebben toegekend. Geregeld blijkt dat iemand vooraf de zes juiste getallen heeft aangeduid op het lottoformulier. Een kans, hoe klein ook maar groter dan nul, is en blijft een kans. De bijbehorende gebeurtenis kan niet op voorhand worden afgedaan als onmogelijk. Noem het de “wet van de waterkans”. De “wet van Wenmackers” allitereert even mooi, maar hierbij is opnieuw de wet van Stigler van kracht: wetenschapsfilosoof Brian Skyrms schreef hier immers al over in 1980. Hij benadrukt dat we kunnen winnen. Enkel als we niet meedoen aan de loterij is winnen echt onmogelijk.

Natuurlijk blijft het veel waarschijnlijker dat die ene, vooraf uitgekozen combinatie niet zal winnen. Het is precies deze vaststelling die het principe van Cournot zo plausibel maakt. In veel situaties weten we echter op voorhand met volledige zekerheid dat er een gebeurtenis met een zeer kleine kans zal optreden. Over een uur zullen de luchtmoleculen in onze dampkring zich in een bepaalde configuratie bevinden. Er zijn zeer veel configuraties mogelijk waardoor de kans behorende bij elke specifieke configuratie zeer laag is, maar er zal er één gerealiseerd worden. Dit is mijn wet, de wet van de waterkans: “Als elke mogelijke gebeurtenis een even kleine kans heeft, moet er met zekerheid een gebeurtenis met zo’n kleine kans gerealiseerd worden.”

Kosmische loterij.Als afsluitende denkoefening moet je je eens proberen voorstellen hoe klein de kans was dat je geboren zou worden en dat je leven zich vervolgens precies zo zou voltrekken als het tot op de dag van vandaag heeft gedaan. Hoe groot was die kans op basis van informatie beschikbaar negen maanden voor je geboorte? Negen jaar voordien? Negentig jaar ervoor? Toen de eerste mensen ontstonden? Toen de aarde gevormd werd? Het zonnestelsel? Het heelal???

Als je genoeg details in rekening brengt, kom je al snel bij een kans van minder dan één honderd-octiljoenste uit. Moeten wij onszelf dan tot een paradox verklaren, onmogelijk op de kosmische schaal? Welnee, we zijn gewoon allemaal het levende bewijs van de collectieve kracht van waterkansen. Wij zijn de onvoorziene winnaars in de kosmische loterij.

Er staan ons nog veel onvoorspelbare gebeurtenissen te wachten, zoveel is zeker.

Gelijkaardige berichten:

Facebooktwitterredditpinteresttumblrmail

1 Reactie

  1. Jos

    Ik zou je wet van de waterkans willen veralgemeniseren tot:

    “Van elke mogelijke gebeurtenis zal er een gebeuren.”

    De kansen (met som 1) doen er niet toe.

    Reageren

Laat een reactie achter

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *

82 − 75 =