Er kwam nog eens een originele optica-vraag binnen, dus ik schreef een antwoord.
Pieter vroeg:
“Waarom kleurt de hemel ’s avonds nooit van blauw naar groen en dan pas naar rood?
Ik begrijp het fenomeen van rayleigh scattering. vanuit deze kennis lijkt me het dan ook logisch dat de hemel ’s avonds rood kleurt. Maar toch verklaart dit voor mij dan niet waarom er niet meer overgangskleuren zichtbaar worden naar de avond toe. Als het licht een langere weg door de atmosfeer aflegt, zou wanneer het blauwe licht weggefilterd wordt toch eerst het groene zichtbaar moeten worden. Dit aangezien groen een kortere golflengte heeft als rood en dus sneller rayleigh scattering zou ondergaan.”
Beste Pieter,
Om je vraag volledig te beantwoorden moeten we het hebben over fysica, fysiologie en psychologie.
~
Je vraag veronderstelt dat de hemel ’s avonds nooit van blauw naar groen verkleurt, maar dat klopt niet helemaal.
Als je boven de horizon kijkt richting N of Z (dus niet in de richting van de ondergaande zon in het W) dan zie je daar ’s avonds soms weldegelijk een groene zone. Het is bleekgroen en maar een smalle regio, maar het is er wel. Het is gemakkelijker te zien als er lage wolken hangen (zoals op de foto hieronder): door een deel van de geleidelijke overgang te blokkeren (wat je overigens ook met je handen kan doen als er geen wolken zijn), zie je duidelijker de overgang van blauw naar groen.
In het Nederlandse taalgebied hebben we trouwens toegang tot een ware schatkamer aan dit soort waarnemingen met fysische toelichting (hoewel niet geheel foutloos): deel 1 van “De natuurkunde van ’t vrije veld” van Marcel Minnaert (integraal online). Onder het deel “Licht en kleur van de lucht” bespreekt Minnaert inderdaad de waarneming van groene lucht. Zie deze link en scrol dan naar beneden, naar paragraaf 178: “Wanneer is de lucht in de verte oranje? Wanneer groen?” De kleur ontstaat door een samenspel tussen verstrooiing én absorptie (verzwakking).
Een eerste verklaring voor het schijnbare afwezig zijn van groen in de lucht is dan ook psychologisch: we ‘weten’ dat de hemel blauw is (of oranje-rood bij zonsondergang). Daarom herkennen we dit groen pas als dusdanig als iemand er ons op wijst, of als we er actief naar zoeken.

Groene lucht.
~
Dit neemt niet weg dat er inderdaad weinig groen is en dat het groen bovendien geen ‘zuiver’ groen is. Voor alle duidelijkheid geef ik hier nog een toelichting bij.
We beginnen opnieuw met de fysica. Enkel op basis van de informele uitleg over Rayleigh scattering zou je kunnen verwachten dat er een soort piek is in het spectrum dat tot bij ons geraakt en dat die piek geleidelijk van blauw naar rood verschuift naarmate we de zon lager aan de horizon zien (langer optisch pad, dus meer strooiing van telkens langere golflengten). Op basis daarvan zou je verwachten dat de lucht alle kleuren van de regenboog krijgt tussen blauw en rood. Dit is niet wat we zien, vandaar je vraag.
Om te beginnen is het spectrum van invallend zonlicht een breed spectrum. Alle golflengten worden enigszins verstrooid. Als er veel wolken of stof in de lucht hangen, domineert Mie-verstrooiing, die niet golflengte-afhankelijk is en wordt de lucht wit of grijs. Bij een heldere, droge lucht domineert Rayleigh-strooiing en die is weliswaar sterk golflengte-afhankelijk, maar onder geen enkele omstandigheid is het spectrum van het diffuse zonlicht echt scherp gepiekt. Bij een langere lichtweg (als de zon lager aan de horizon staat) verandert niet alleen de bijdrage van de verstrooiing, maar neemt ook de absorptie toe, waardoor het spectrum als geheel lager wordt (minder intensiteit). Het netto-effect is dat groen nauwelijks doorkomt.
Dit alles heeft ook met de werking van onze ogen te maken (fysiologie). We hebben drie types kegelcellen, die elk gevoelig zijn voor een deel van het voor ons zichtbare spectrum. Zie deze figuur voor de overlappende gebieden waarin menselijke fotoreceptoren gevoelig zijn. (De maxima van de pieken zijn in de figuur even hoog aangeduid, maar zo is het in werkelijkheid niet. De cellen zijn niet even gevoelig, maar er zijn er ook niet evenveel van en bovendien worden de signalen in onze hersenen naverwerkt. De gevoeligheid per type cel zegt dus ook niet alles.) We kunnen kleuren zien doordat de verschillende types cellen in een verschillende verhouding vuren.
Hoewel het maximum bij blauw/groen zit, bevat diffuus zonlicht overdag ook kortere golflengten (violet) en langere golflengten (geel/oranje/rood). Wij zien dit spectrum als hemelsblauw. Hiermee heb je ineens ook (een deel van) het antwoord op een aanverwante vraag: waarom zien we lucht overdag niet als violet? :-) Zie ook deze link en deze link, die beide ook inzicht kunnen geven in het “waarom zo weinig groen?” vraagstuk.
Misschien nog iets dat leuk is om te weten: het feit dat we de lucht boven ons tijdens en na zonsondergang nog steeds als blauw zien, komt doordat het licht dan een langere weg aflegt door de ozonlaag, die langere golflengten (rode kant van het spectrum) absorbeert. Het effect hiervan is zeer duidelijk in simulaties.
Als je er nog veel meer van wil weten, uit een bron recenter dan het boek van Marcel Minnaert: zie bijvoorbeeld Atmospheric Optics van Bohren.
Vriendelijke groeten,
Sylvia
Pingback: Windmolenillusie uit 1937 » Sylvia's blog