Nieuwste blogberichten

Face to face met het onbekende

Hoe kun je jezelf van gedachten doen veranderen?

Verschenen als artikel in Eos december 2020

Wat is het allerbelangrijkste waarover jij ooit van gedachten bent veranderd? We hebben al­lemaal overtuigingen, die een invloed hebben op de patronen die we in onze levens weven. Om deze opvattingen te analyseren moeten we voorbij de patronen kijken. De draden onderzoeken kan een eer­ste stap zijn om de patronen te veranderen, maar dat is gemakkelijker gezegd dan gedaan.

Ondanks mijn ervaring als natuurwetenschapper en filosoof blijkt het moeilijk om rationele principes toe te passen in doordeweekse contexten. Om die moeilijkheid te illustreren, vertel ik hier over de meest persoonlijke kwestie waarover ik van gedachten ben veranderd. Maar laat ik bij het begin beginnen, dus bij de oorsprong van mijn initiële overtuiging.

De eerste foto in mijn babyalbum lijkt op een foto van de maanlanding. Ze is het resultaat van een echo die mijn moeder liet nemen aan het begin van 1980, toen ze in verwachting was van mij. Echografie als niet-invasieve methode om een ongeboren kind te onderzoeken is te­genwoordig heel populair. Tijdens een gewone zwanger­schap wordt dit onderzoek in België nu minstens drie keer uitgevoerd. Maar destijds was het nog relatief onge­bruikelijk. Mijn ouders hadden bewust voor dat onder­zoek gekozen, omdat mijn vader zowel een familielid had met het syndroom van Down als een naaste die geboren was met een open rug (spina bifida).

Om die reden liet mijn moeder ook een vruchtwater­punctie uitvoeren. Hierbij wordt een staal genomen van het vruchtwater, dat cellen van de foetus bevat: daarin kunnen eventuele chromosomale afwijkingen worden opgespoord. Omdat hiervoor dus de vliezen doorgeprikt moeten worden, houdt de staalname zelf een zeker risico in. Deze invasieve procedure wordt daarom ook nu nog enkel aanbevolen als er specifieke bezorgdheden zijn.

Mijn ouders waren opgelucht toen ze de uitslag van beide onderzoeken kregen. Veel later heeft mijn moeder weleens gespeculeerd dat haar gynaecoloog misschien toch iets gezien had op de echo, zonder het haar te zeg­gen. Maar de beeldvorming was gewoon nog niet zo ver­fijnd als nu.

Sprookjes en vragen

‘Wat heef ik daar? Dat heef jij niet!’ zou ik als peuter te­gen haar gezegd hebben, toen we thuis samen in de spie­gel keken. Dat was de eerste keer dat ik de littekens op mijn bovenlip opmerkte. Zelf herinner ik me dat moment natuurlijk niet, maar ik weet dat ze me heeft uitgelegd dat ik geboren was met een gespleten lip en gehemelte.

Ze zal me ook verteld hebben dat een dokter dat had dichtgenaaid toen ik nog een baby was, waarna ik nor­maal had kunnen eten en leren praten. Ze gebruikte niet het woord ‘hazenlip’ – dat woord heb ik later op de speel­plaats geleerd. Nog later hoorde ik de kaakchirurg spre­ken van een schisis. Schisis kan verwijzen naar een lip-, kaak- of gehemeltespleet, of een combinatie daarvan.

Naarmate ik groter werd, kwamen er nog veel meer vragen in me op. Iets dat ik bijvoorbeeld niet begreep was waarom andere kinderen me plaagden omwille van mijn lip, terwijl ik daar toch niets aan kon doen. Het was ook niet de fout van mijn ouders: zij hadden geen enkele reden gehad om een baby te verwachten met een lip- en gehemeltespleet. Het was hen gewoon overkomen, totaal onverwacht. De maanlandingsfoto in mijn babyalbum toonde juist aan dat ze er alles aan hadden gedaan om goed voorbereid te zijn. Ik herinner me de opluchting die ik voelde toen ik begreep dat zij geen schuld droegen.

De reactie van mijn moeder was fantastisch. ‘Het is goed dat dit kindje bij mij gekomen is,’ dacht zij, ‘want ik zal er met heel mijn hart van houden en het alle extra zorgen geven die het nodig heeft.’ En dat voornemen maakte ze waar. Ze praatte veel tegen me en las me al sprookjes voor toen ik nog in de wieg lag, in de hoop dat het me zou helpen om goed te leren praten.

Ik ben inderdaad vroeg beginnen praten en de pas­sieve kennis van de woordenschat uit boeken gaf me een voorsprong op school – evenals een levenslange liefde voor boeken. Geleidelijk realiseerde ik me hoe uitzonder­lijk haar onmiddellijke vastbesloten liefde voor mij was, want soms werd ze door het ziekenhuis gevraagd om met ouders te gaan praten die het moeilijker hadden om te aanvaarden dat hun baby geboren was met een schisis. En het duurde nog langer om te begrijpen hoe menselijk ook die reactie was.

Hayv Kahraman, Threading My Moustache (2010) link

Gekneed door een mythe

Als ik vragen had waarop ook mijn ouders het antwoord niet wisten, stelden ze voor dat ik ze stelde aan een specia­list. Zo vroeg ik aan de kaakchirurg bij wie ik in behandeling was of mijn kinderen ook een hazenlip zouden hebben. Zo blij als ik was dat mijn ouders niets te verwijten viel voor mijn geboorteafwijking, zo bang was ik om het defect door te geven, want dan meende ik wel schuldig te zijn.

Wel, antwoordde hij, jouw kinderen lopen evenveel risico als die van eender wie, maar je kleinkinderen zou­den het kunnen hebben. Ik was erg jong op dat moment, dus ik herinner me niet woordelijk wat de dokter heeft gezegd. Ik herinner me wel dat ik er achteraf met mijn ouders over heb gepraat. Ze hebben toen zeker vermeld dat lipspleten ‘een generatie overslaan’. Intussen weet ik dat er geen kenmerken zijn die consistent een generatie overslaan, maar deze mythe heeft het verloop van mijn leven grondig veranderd.

Deze gesprekken waren namelijk de reden waarom ik toen heb besloten nooit kinderen te krijgen. Het was het risico niet waard! Ik wilde mijn kinderen niet belasten door mijn defect door te geven aan hun toekomstige kin­deren. En omdat ik geen kinderen wilde, hoefde ik niet te trouwen. Dat was maar beter ook, want andere kinderen leken mijn gezicht toch niet leuk te vinden. Ondertussen zeiden volwassenen tegen me dat het jammer was dat ik niet als jongen geboren was, want ‘uiterlijk is minder be­langrijk voor mannen’ en ze kunnen altijd een snor laten groeien als ze opgroeien. Wat ik met die informatie aan moest, dat weet ik nog steeds niet.

“Zo blij als ik was dat mijn ouders niets te verwijten viel voor mijn geboorteafwijking, zo bang was ik om het defect door te geven”

Alleen en kinderloos blijven zou me een hoop verdriet besparen, besloot ik. Je kunt op voorhand afwijzen wat onbereikbaar lijkt.

In de biologieles op de middelbare school leerden we de basis van de mendeliaanse genetica. Die laat zien hoe een recessief gen in de ene generatie onuitgedrukt kan worden doorgegeven en in de volgende kan verschij­nen. Het volksgeloof dat er eigenschappen zouden zijn die dat systematisch doen is dus een mythe. Hoewel de overerving van een gespleten lip ingewikkelder is en niet op school werd behandeld, leidde ik eruit af dat mijn kin­deren (in plaats van mijn kleinkinderen) gevaar zouden lopen. Het bevestigde mijn eerdere beslissing om nooit een gezin te stichten.

Stigmatisering gaat verder dan sociale uitsluiting: je gaat al snel anticiperen op afwijzing, je maakt je kleiner dan je bent, onzichtbaar haast, wat de negatieve impact versterkt. Opgroeien met littekens beperkte mijn moge­lijkheden tot spontane zelfontplooiing.

‘Alleen omdat we van nature met elkaar verbonden zijn, kunnen we ons eenzaam of geïsoleerd voelen’, zei Jürgen Habermas in een herdenkingsrede op 11 november 2004 in Kyoto (link naar pdf). Hij groeide op met een gehemeltespleet, waardoor hij moeilijk kon praten en zwaar gepest werd. Die vroege ervaringen inspireerden zijn latere werk in de sociale en politieke filosofie, zo vertelde hij tijdens de lezing. Die lezing had hij trouwens helemaal uitgeschreven, omdat hij nog steeds niet graag onvoorbereid spreekt.

Onwetendheid als zegen

Toen een jongen in mij geïnteresseerd leek, had ik mede­lijden met hem: hij moet wel blind zijn, of heel wanhopig, dacht ik. Ondanks de voor de hand liggende nadelen van dit pessimisme hielp deze mentaliteit me om me te concentreren op mijn schoolwerk en om daarna een uit­dagende studie in de natuurkunde en filosofie te kiezen. Toch werd ik op een gegeven moment verliefd op de man die de vader van mijn kind en mijn echtgenoot zou wor­den. Dus ergens is er toch iets fundamenteel veranderd: precies daarover gaat dit stuk.

Toen we als twintigers begonnen te daten, werkten we beiden aan een doctoraat in de fysica. Hij vroeg me of mijn littekens het gevolg waren van een hondenbeet. Nee, van een gespleten lip, antwoordde ik. Hij kende iemand anders die dat had. En dat was dat. Ik stond er versteld van hoe gemakkelijk hij het ter sprake bracht en hoe gemakkelijk hij mijn antwoord accepteerde, zonder het af te wimpelen. Hij leek niet blind of wanhopig.

Het onderwerp kinderen kwam snel genoeg ter spra­ke. Ik zei hem dat als hij echt kinderen wilde, hij niet bij mij moest blijven. Hij bleef toch. Ik vertelde vrienden dat als ik ooit aankondigde zwanger te zijn, ze gerust moch­ten aannemen dat het een ongelukje was. Toch had ik zo’n scenario niet verwacht, want ik was de koningin van de dubbele bescherming.

Als ik ’s morgens vroeg les moest geven, gebruikte ik bijvoorbeeld zowel een wekkerradio als een ouderwetse wekker. Omdat de manieren waarop deze methodes kun­nen falen onafhankelijk zijn (stroomonderbreking versus mechanisch defect), is de kans dat ze tegelijkertijd falen het product van de kansen op falen voor elk van hen. Het vermenigvuldigen van twee kleine kansen resulteert in een zeer klein risico. Hetzelfde geldt voor anticonceptie. De pil en condooms zijn op zich al betrouwbare vormen van anticonceptie als ze zorgvuldig worden gebruikt. De combinatie bood een vangnet voor het vangnet: iets waar ik echt op kon rekenen.

Wat ik in geen van mijn berekeningen had voorzien, was dat ik degene zou zijn die beide vormen van bescher­ming zou loslaten en het idee om zwanger te worden volledig zou omarmen. Toen we erover spraken, zei mijn vriend: ‘Je hebt jezelf gehersenspoeld om te geloven dat je geen kinderen mag krijgen.’ Daar zat een kern van waarheid in. En toen het onderwerp ter sprake kwam in een gesprek met een vriendin en collega die een kind had, was haar spontane reactie: ‘Maar een hazenlip is niet het ergste dat kan gebeuren!’ Opnieuw zeer waar.

Spina bifida, hartaandoeningen en wie weet welke andere aangeboren aandoeningen er bestaan: ze kunnen allemaal ernstigere gevolgen hebben voor het leven van een kind en zijn ouders. Maar voor geen van die moge­lijke complicaties zou ik me zo verantwoordelijk voelen als voor het doorgeven van een hazenlip.

Ik zou me kunnen voorstellen dat ik sterk zou zijn en vastberaden in mijn liefde voor een kind met eender welk onvoorzien syndroom of ziekte, zoals mijn moeder dat voor mij was geweest. Als ik niet op voorhand zou weten wat ik kon verwachten, wat betreft de behandeling en de reacties van anderen, zou niets mijn vastberadenheid kunnen verzwakken. Onwetendheid kan een zegen zijn. Het was de voorkennis alles nog eens als bijstander te moeten meemaken, door een bewuste keuze van mijzelf, die me van mijn moed beroofde. Het legt een bom onder de gedachte ‘had ik maar zelf’.

Ironie

Als ik me mezelf voorstelde met een baby, beeldde ik me altijd een kindje in met een lipspleet en mezelf in tranen. Dat scenario was het meest levendig voor mij. Maar het is niet rationeel om de meest levendige mogelijkheid ook als de meest waarschijnlijke uitkomst te beschouwen.

Van dat feit was ik me bewust, want sinds ik samen was met mijn lief had ik mijn doctoraat in de fysica be­haald en mijn onderzoeksgebied verlegd van natuurwe­tenschap naar wetenschapsfilosofie. Mijn nieuwe project ging precies over waarschijnlijkheid. Ik gaf een cursus over het onderwerp, waarin ook psychologische aspec­ten van waarschijnlijkheid en risicobeoordeling aan bod kwamen.

Intussen had mijn vriend mijn belangrijkste reden begrepen om geen kinderen te willen: ik wilde mijn ge­boortedefect niet doorgeven. Op een gegeven moment stelde hij me een eenvoudige vraag: ‘Maar hoe groot is dat risico dan?’ Ik realiseerde me dat ik het antwoord niet wist. De ironie van specialiseren in kanstheorie en het vervolgens niet adequaat toe te passen in mijn eigen leven, is me niet ontgaan.

“Mijn mening veranderen over zo’n kernonderdeel van mijn leven is een van de engste dingen die ik ooit heb gedaan”

In plaats van de conclusie die ik lang geleden had getrokken en publiekelijk had verkondigd te proberen verdedigen, moest ik op zoek naar gefundeerde infor­matie. Daarbij moest ik openstaan voor de mogelijkheid dat mijn eerdere opvattingen verkeerd waren. Als weten­schapper en filosoof ben ik hiervoor opgeleid, maar het bleef moeilijk om het in mijn persoonlijke leven toe te passen.

Een gezonde dosis twijfel zorgt ervoor dat demonen uit de weg geruimd worden. ‘Geloof niet alles wat je denkt’ bleek een nuttig mantra te zijn. Ik ging op zoek naar meer informatie, wat me ertoe bracht om lang ge­koesterde overtuigingen te heroverwegen. Tot op heden is het veranderen van mijn mening over zo’n kernonder­deel van mijn leven een van de engste dingen die ik ooit heb gedaan. Het herzien van mijn overtuigingen vereiste namelijk dat ik inconsistent werd met mijn vroegere ik. En voor inconsistentie is menig filosoof het bangst van al.

Schisis heeft geen schuldigen

Wat ik op dat moment had moeten doen – en wat ik jou adviseer te doen als je je in een vergelijkbare situatie bevindt – was een arts om een genetisch consult vragen. Als academicus, en een eigenwijs exemplaar op de koop toe, verdiepte ik me echter liever zelf in de medische literatuur. Ik had het geluk om online zeer betrouwbare informatie te vinden. Een belangrijke bron was een rap­port van Koenraad Devriendt van het Departement Men­selijke Erfelijkheid aan de KU Leuven (link naar pdf).

Uit dat rapport, van 2007 of ouder, heb ik geleerd dat alle embryo’s al vroeg in hun ontwikkeling een gespleten gezicht hebben. Er zijn honderden genen betrokken bij het sluiten van de structuren in het midden van het men­selijke gelaat, wat normaal gesproken vroeg in het eerste semester van de zwangerschap gebeurt.

Als er in dit stadium iets onherstelbaar fout gaat, wordt de baby geboren met een gespleten gehemelte en/of lip – de ultieme babyface als het ware. De oorzaken van afwijkingen zijn multifactorieel: er is een genetische component, waarbij een veelheid aan genen betrokken is, en er is een omgevingscomponent, waarvan de belang­rijkste factoren meestal onbekend zijn.

Aan de genetische kant zijn enkele genen geïdentifi­ceerd waarvan sequentievarianten geassocieerd zijn met schisis. Maar ze zijn niet altijd betrokken. Daarom moeten er andere genetische defecten zijn die spleten kunnen veroorzaken. En zelfs in gezinnen van wie bekend is dat een van de genetische defecten voorkomt, hebben niet alle personen een schisis. Omgevingsfactoren zijn dus altijd betrokken. Schisis kan deel uitmaken van een syndroom dat samengaat met andere problemen. In dat geval is de genetische component sterker en beter bekend.

Aangezien de schisis in mijn geval geen onderdeel is van een syndroom en ik de enige ben in mijn familie, had het weinig zin om te vragen naar een DNA-analyse. Er is gewoonweg geen genetische test beschikbaar om te con­troleren of ik het defect zou doorgeven. Zelfs als er een volledig genetisch risicoprofiel beschikbaar zou zijn, zou dat weinig praktische waarde hebben, omdat omgevings­factoren zo’n belangrijke rol spelen.

Afgezien van enkele risicofactoren die betrokken zijn bij meerdere aangeboren misvormingen, zoals de leeftijd van de moeder, roken en bepaalde stoffen, moeten er ex­tra factoren in het spel zijn bij het ontstaan van schisis. Maar de manier waarop deze samenspannen met geneti­sche aanleg blijft grotendeels onbekend.

Het is geen kwestie van ‘wat moeder ‘verkeerd’ gedaan zou hebben’, zoals het rapport nadrukkelijk stelde. Van volksverhalen over de vermeende invloed van psychische indrukken van de moeder tot mijn eigen pogingen uit mijn kindertijd om de oorsprong van mijn littekens te achterhalen: causaal denken is vaak verweven met het zoeken naar een schuldige. Het is ontroerend om een arts te vinden die hiervan op de hoogte is en zijn lezers laat zien dat het helemaal niet nodig is om een schuldige aan te wijzen.

De enige op school

Bij gebrek aan kennis over precieze causale paden kun­nen we alleen maar kijken naar frequenties in de algeme­ne bevolking en herhalingsfrequenties in tweelingen of andere specifieke subgroepen. Het basispercentage – dat is de prevalentie van orofaciale spleten in de algemene bevolking – is minder dan één op de vijfhonderd. Dit be­tekent dat er meestal één kind met een schisis per school is, of geen. Mijn eigen schoolervaring was typisch op dit vlak: ik was de enige op mijn school, hoewel sommige klasgenoten nog een kind van een andere school kenden.

Toen las ik het sleutelgetal in het rapport: als een van beide ouders een schisis heeft, is het risico dat hun baby het ook heeft 3 tot 5 procent. Dat is tot veertig keer meer dan bij ouders zonder schisis!

Toen ik dat las, voelde ik me gesterkt in mijn overtui­ging dat ik het risico om kinderen te krijgen gewoon niet moest nemen. Niet!

Mijn hypothetische kinderen zouden ook een risico hebben om het door te geven boven het bevolkingsrisico: ongeveer een op de honderdzeventig. Daarna neemt het snel af. Het is minder dan een op de driehonderd voor de vierde generatie en na de vierde generatie is het weer het algemene bevolkingsrisico (het al genoemde cijfer van minder dan een op de vijfhonderd).

Terwijl mijn kinderangst voor het overslaan van een generatie nu minder relevant leek, was het risico inder­daad het hoogste voor mijn eigen kinderen, net zoals de biologieles uit de middelbare school suggereerde.

Toen ik dat aan mijn vriend vertelde, verwachtte ik dat hij het er volledig mee eens zou zijn dat dit be­tekende dat het niet goed was om kinderen te krijgen. Hij reageerde heel anders. ‘Dus het risico is maximaal 5 procent,’ zei hij, ‘dat is minstens 95 procent kans om een kind zonder schisis te krijgen.”

Paradox

We wisten eindelijk wat ons risico was om een kindje met een hazenlip te krijgen. Toch wisten we niet hoe we dat cijfer moesten gebruiken om tot een beslissing te ko­men. Een van ons moest nog steeds de ander van gedach­ten laten veranderen – of zichzelf.

Toen ik mijn vriend probeerde te overtuigen, ontdek­te ik zwakheden in mijn eigen argumenten. Het gebeurde niet van de ene op de andere dag, maar mijn ideeën begonnen te veranderen. Als ik dacht aan de mogelijk­heid moeder te worden, zag ik mezelf niet meer per se in tranen. In plaats daarvan stelde ik me twintig potentiële baby’s voor, negentien zonder hazenlip, en eentje met. Het was net als die scenario’s uit de elementaire kans­rekening met gekleurde ballen in een vaas. Behalve dat de ballen baby’s waren. Bovendien was ik niet helemaal zeker van de inhoud van de vaas. Misschien waren er honderd baby’s en slechts drie met een schisis? Het was verwarrend.

Mijn situatie leek op die van de deelnemers aan het Ellsbergprobleem. Dat scenario gaat over een vaas met honderd ballen, waarvan er veertig rood zijn. De overige zestig zijn gele en zwarte ballen, maar er wordt niet verteld hoeveel er van elke kleur zijn. Je krijgt dan twee weddenschappen aangeboden, waarbij je in beide geval­len moet kiezen tussen twee mogelijke acties.

Met besliskunde kun je aantonen welke combinaties van weddenschappen rationeel zijn, omdat ze de verwach­te winst maximaliseren. Toch kiezen in experimenten deel­nemers systematisch voor een suboptimale combinatie van weddenschappen. Ze hebben de neiging om de voorkeur te geven aan de keuzes die alleen betrekking hebben op bekende getallen, waardoor ze weddenschappen met on­bekende getallen vermijden. Vanwege de discrepantie tus­sen het theoretische optimum en de waargenomen keuze wordt dit ook de Ellsbergparadox genoemd.

In mijn onwil om een kinderwens serieus te overwegen was niet zozeer de omvang van het risico zelf een factor, maar eerder het gebrek aan een precieze inschatting ervan. Omdat ik me bewust was van hoe irrationeel dat was, voel­de het inderdaad paradoxaal. Door verschillende manieren van denken over de kansen en de mogelijke resultaten van mijn levenskeuzes uit te proberen, slaagde ik er langzaam in mijn denkgewoontes te veranderen.

Sprong in het diepe

Aangezien het frequentie-interval van 3 tot 5 procent slechts een ruwe schatting was, heb ik geprobeerd een nauwkeurigere schatting te maken, rekening houdend met bijkomende informatie. Als je een broer of zus hebt met schisis is het risico dat je baby het ook heeft groter. Omdat ik geen broers of zussen heb, had ik die extra in­formatie niet. Hoewel niet meer weten het risico op zich niet vergroot, vergroot het wel de onzekerheid over het risico. De meeste mensen hebben daar een hekel aan, en ik was niet anders.

Maar anders dan deelnemers aan het kunstmatige Ellsbergexperiment kon ik toch wat meer inzicht krij­gen in de mogelijke inhoud van de vaas. Niet-syndro­male schisis komt vaker voor bij jongens dan bij meis­jes. Maar wanneer een meisje wordt getroffen, neemt het herhalingsrisico toe. Dat was geen goed nieuws voor mij.

De ernst van het defect – alleen lip of lip en gehe­melte? Slechts één kant of beide? – verhoogt het risico op herhaling verder. Als enige in het gezin wordt dit vermin­derd. Hoewel ik geen broers of zussen heb, heb ik veel neefjes en nichtjes, en geen van hen heeft een schisis.

Ik begon te geloven dat mijn risico om een kind met een kloof te krijgen waarschijnlijk bijna 5 procent was, of ongeveer een op de twintig. Hoewel dat het onderste deel van het interval uitsluit, wat een volkomen rationeel wezen terughoudender zou moeten maken om ervoor te gaan, had de toegenomen duidelijkheid het tegenoverge­stelde effect op mij.

Door meer te praten met mijn vriend (‘Wat er ook gebeurt, je staat er niet alleen voor’) en anderen (‘Ik ben zo gewoon om je te zien, ik zie de littekens nauwelijks’), werd me iets duidelijk. Door keuzes te vermijden die veel onzekerheid met zich meebrachten nam ik het grootste risico: het risico om mijn leven niet ten volle te leven.

Ik las dat 3 procent de gemiddelde frequentie is om een baby te krijgen met enige geboorteafwijking. Voor iedereen betekent de keuze voor een kind dus een sprong in het diepe: hopen op het beste en moed hebben terwijl je face to face staat met het onbekende – vertrouwen dat je een manier zult vinden om ermee om te gaan.

We gingen van dubbele naar enkelvoudige bescher­ming, wat voor mij al een enorme stap was. Hoewel zwanger worden op dat moment nog steeds erg onwaar­schijnlijk was, liet ik toe dat het waarschijnlijker werd dan ooit tevoren.

Iets later kon ik me voorstellen dat ik gelukkig zou zijn als ik erachter zou komen dat ik zwanger was. Ik was eindelijk bereid om de laatste verdedigingslinie tus­sen mijn vruchtbaarheid en die ooit zo angstaanjagende mogelijkheid op te geven. En aangezien leeftijd een risi­cofactor is voor het krijgen van een baby met een schisis, net als vele andere complicaties, hebben we niet langer gewacht.

Irrationeel optimisme

Zwanger zijn is een unieke ervaring, en ik ben voor altijd dankbaar dat ik weet hoe het voelt. Het is in vele opzich­ten ook erg vreemd.

Een raar besef tijdens een zwangerschap is dat al­les wat je eet of doet de ontwikkeling van je baby kan beïnvloeden, maar in welke zin? Er is een hele industrie van supplementen, crèmes en boeken die gedijt op deze onzekerheid.

Ook buiten de commerciële context worden zwan­gere vrouwen vaak gebombardeerd met advies over wat (niet) te eten en (niet) te doen. Een van de weinige adviezen aan zwangere vrouwen die goed worden onder­steund door bewijs, is foliumzuursupplementen nemen. Die verminderen het risico op spina bifida duidelijk, en mogelijk geldt dat ook voor schisis.

Het voelde goed om tenminste een bron van risico op geboorteafwijkingen actief te kunnen verminderen. Toch is mijn toegenomen optimisme in dat stadium waar­schijnlijk ook deels irrationeel geweest: psychologisch onderzoek toont aan dat de indruk dat je een uitkomst kunt beïnvloeden het waargenomen risico verlaagt.

Een ander vreemd besef is dat de sluiting van het gehemelte en de lip zo vroeg in de zwangerschap plaats­vindt, lang voordat kan worden gecontroleerd of dit inge­wikkelde proces succesvol is verlopen. We hebben even overwogen om ons eigen echoapparaat te bouwen – hoe moeilijk kan het zijn voor twee natuurkundigen? Hoewel deze dagdroom nooit is uitgekomen, zijn er bedrijven die echografie aanbieden aan zwangere vrouwen, naast de echo’s die gepland zijn in de praktijk van de gynaecoloog. Opnieuw is de onzekerheid van toekomstige ouders een zekere investering voor slimme ondernemers.

Vanwege de hogere risico’s voor geboorteafwijkingen aan mijn kant van de familie kregen we wel een extra afspraak voor een structurele echo bij een tweede gynae­coloog. Dit onderzoek betrof een systematische controle van de vitale organen en in ons geval natuurlijk ook het gezicht van de foetus. Deze arts vertelde ons toen ook het geslacht van ons kind. Ik hoopte dat we een meisje zouden krijgen, omdat het risico op een schisis bij jon­gens groter is.

Toen ik hoorde dat het een jongen was, hoopte ik dat hij op zijn vader zou lijken. Wensen is irrationeel, maar het meeste in het leven is dat ook. Ik wenste het uit alle macht.

Een nieuw gezicht

De eerste foto in het babyalbum van mijn zoon is een driedimensionale echografie. Je kunt er een puntig neusje en een gesloten bovenlip op ontwaren. Hoewel de tweede gynaecoloog ons had verteld dat onze zoon geen gespleten lip had, was ik pas volledig gerustgesteld toen ik hem in mijn armen hield en zijn gezicht met mijn eigen ogen kon zien.

Onze zoon is nu acht. Ik begon hem verhalen te vertellen toen hij nog een baby was en hij is zelf een fer­vente lezer geworden. Hij was er trots op de ringen te mogen dragen tijdens onze huwelijksceremonie enkele jaren geleden. Wat ooit onbereikbaar leek, is inmiddels ‘het gewone leven’. Mijn zoon lijkt veel op zijn vader en moet me nog vragen waarom mijn bovenlip er zo anders uitziet dan die van hem. Zo kon door het veranderen van mijn gedachten een nieuw leven beginnen.

Dankwoord Met dank aan prof. dr. Koen Devriendt om een eerdere versie van dit artikel na te lezen en enkele feitelijke fouten te corrigeren.

In ontwikkelingslanden kan het, in Limburg niet

Dit opiniestuk is op dinsdag 17 september 2019 verschenen in de Standaard.

De reacties op dit opiniestuk illustreerden mijn punt: “Buiten Limburg is er weinig inzicht in de neerwaartse spiraal waarin de regio beland is.”

Ontwikkelingssamenwerking gaat de laatste jaren uit van de visie dat ontwikkelingslanden het best de eigen opbouw leiden. Vroeger richtten ngo’s bijvoorbeeld scholen en ziekenhuizen op, maar we hebben ingezien dat het beter is om de lokale bevolking te helpen dat zelf te doen. Het wordt tijd om deze houding ook toe te passen als het over een Vlaamse regio gaat: Limburg, en met name zijn universiteit.

Vóór de Vlaamse verkiezingen heeft UHasselt een groeiplan voorgesteld waarin ze extra budget vroeg voor twaalf nieuwe richtingen. Terwijl de andere partijen daar positief tegenover stonden, maakte de N-VA meteen duidelijk dat zij dit voorstel niet kon steunen. Afgelopen weekend stond in Het Belang van Limburg dat er naar alle waarschijnlijkheid geen enkele richting bijkomt.

Met het plan pleit UHasselt natuurlijk voor eigen winkel. De andere universiteiten zijn kritisch, want groei van de ene betekent minder marge voor de andere. Maar in plaats van te redeneren vanuit de belangen van de instellingen, moeten we ons afvragen wat het grotere belang dient. Vlaanderen heeft in het westen en vooral in het oosten regio’s die economisch achtergesteld zijn. Voor Vlaanderen als geheel is het gunstig om die grote achterstand weg te werken door te investeren in infrastructuur en opleidingen, waardoor die regio’s zich op eigen krachten verder kunnen ontwikkelen. Zowel voor de regio’s als voor de universiteiten is het gunstig om deel uit te maken van een netwerk met andere sterke partners, elk met een eigen profiel.

Braindrain

Investeren in een lokale universiteit is niet altijd de beste oplossing. Is het bijvoorbeeld niet zonde om opleidingen die elders in Vlaanderen al bestaan te dupliceren? Maar UHasselt heeft, mede omdat ze geen filiaal is van een grotere universiteit, een eigen onderwijssysteem. Bovendien stelt haar groeiplan innovatieve en lokaal relevante richtingen voorop. Zo is een van de twaalf nieuwe richtingen die ze voorstelt een master in materiomics (chemie en fysica). Die bestaat nog niet in Vlaanderen, terwijl de kleine universiteit daarin wel de nodige onderzoeksexpertise kan voorleggen.

Nieuwe richtingen kosten geld. Kan dat niet beter worden besteed: Limburgse studenten kunnen toch in Leuven of elders gaan studeren? Vlaamse studenten moeten zeker meer gestimuleerd worden om verder van huis te gaan, maar het is cru om uitgerekend van Limburgse studenten te verwachten dat ze daarin het voortouw nemen. Gemiddeld komen ze uit gezinnen met een slechtere sociaaleconomische achtergrond. Bovendien is het openbaar vervoer ondermaats. Er zijn zelfs geen treinsporen meer ten oosten van Genk. Van de oude sporen zijn fietspaden gemaakt.

Aan de ene kant raak je als student dus moeilijk weg uit Limburg, terwijl aan de andere kant de lokale universiteit kleingehouden wordt en initiatieven ter verbetering in de kiem gesmoord worden. Studenten die wel uitvliegen, keren zelden terug naar Limburg, waar toch al weinig werkgelegenheid is, zeker voor hooggeschoolden. Deze braindrain verslechtert de situatie nog.

Alternatief?

Buiten Limburg is er weinig inzicht in de neerwaartse spiraal waarin de regio beland is. En de Limburgse visie wordt, tegen de hedendaagse kijk op ontwikkelingssamenwerking in, genegeerd. Terwijl de grote universiteiten uitpakken met vernieuwende ideeën over service learning ten dienste van hun (stedelijke) omgeving, wordt de analyse die UHasselt maakt, en die wordt gedragen door brede lokale steun van sociale partners, achteloos van tafel geveegd. Een alternatief, zoals een betere ontsluiting van de provincie, heb ik evenmin gezien.

Het wordt tijd dat er ook buiten de Limburgse media aandacht komt voor deze systematische ondermijning. Alleen zo kan er iets ten goede veranderen in Limburg, waar ook de rest van Vlaanderen – academisch en economisch – wel bij zal varen.

Niet-gelovig en diepreligieus

Deze column is verschenen in Eos (april 2019).

“Systeem! hoe graag met U alleen
verklein ik in mijn droom Uw blote
heelal tot knuffelbare grootte
en koester U door mij heen!”

Hiermee opent Een psalm voor dit heelal van Leo Vroman. De in 2014 overleden Vroman was hematoloog (bloedonderzoeker), dichter en tekenaar. In het gedicht Ik Joods? zette hij zich af tegen religieus extremisme en schreef hij: ‘Ik geloof dat alles heilig is’. De titel van zijn autobiografie, Warm, rood, nat, lief, verwijst naar zijn studieobject: bloed. In dat boek had hij het geregeld over de Natuur, met een hoofdletter dus. In zijn latere poëzie werd die vervangen door het Systeem, in een poging een onpersoonlijk godsbeeld te creëren.

Er zijn een aantal overeenkomsten tussen het godsbeeld van Vroman en dat van Albert Einstein. Ook Einstein behoorde tot een joodse familie en het is algemeen bekend dat hij door het opkomende nazisme in Duitsland naar de Verenigde Staten moest emigreren. Maar Einstein liet zich bij enkele gelegenheden ontvallen dat zijn religieuze overtuigingen bij die van Spinoza aansloten.

Voor Spinoza vielen God en de natuur samen. Het ging bij hem niet om een persoonlijke god zoals je die vindt in het christendom, en evenmin om een bron van menselijke moraal. Dat laat ruimte voor een ‘ongelovige religiositeit’, waartoe Albert Einstein en sommige andere wetenschappers zich aangetrokken voelen. Wellicht kunnen we Leo Vromans Systeem ook in deze traditie onderbrengen.

Kosmische spiritualiteit kan je pas overvallen als je je bladen vol formules even opzijschuift.

Filosoof en Spinoza-kenner Herman De Dijn schrijft in zijn vorig jaar verschenen boek Rituelen onder meer over religie in een seculiere maatschappij. Eén hoofdstuk gaat over kosmische spiritualiteit. Spinoza en de zelfverklaarde diepreligieuze, niet-gelovige Einstein komen uiteraard aan bod. Tot mijn groot plezier citeert De Dijn ook drie strofes van Vroman, al kiest hij niet voor een fragment waarin het Systeem expliciet vermeld wordt.

De Dijn onderscheidt twee fases in de kosmische spiritualiteit: een fase die kan aanzetten om wetenschap te gaan bedrijven en een fase die uit wetenschappelijke ervaring kan resulteren. De eerste fase is een voorwetenschappelijke verwondering over het mysterie van de natuur. Als dat aanleiding is voor een diep ‘vertrouwen (‘faith’) in de rationaliteit van die verwonderlijke realiteit’, dan kan deze religieuze emotie een sterke motivatie vormen om aan wetenschap te doen, met toewijding en volharding.

De tweede fase is een andere vorm van verwondering, die maar kan ontstaan nadat men ervaring heeft met zelf aan wetenschap doen. Het gaat om de ondervinding een heel klein stukje van de werkelijkheid te begrijpen. Een ervaring die aanleiding geeft tot het besef dat de mens deel uitmaakt van een veel grotere werkelijkheid.

Die werkelijkheid begrijpt hij niet volledig en hij zal dat ook nooit doen, maar ze geeft toch blijk van een grote rationaliteit. Zo kan wetenschappelijke activiteit uitmonden in een diep ontzag voor de rationaliteit die zich in de werkelijkheid manifesteert. Het is een gevoel van nietigheid en nederigheid: het eigen theoretische vernuft is verwaarloosbaar vergeleken bij de orde van de werkelijkheid zelf.

De Dijn merkt op dat deze gevoelens niet noodzakelijk leiden tot of resulteren uit wetenschappelijke activiteit. Voorwetenschappelijke verwondering kan bijvoorbeeld ook resulteren in mysticisme of kunstuitingen. En wetenschappelijke activiteit kan pas tot deze vorm van spiritualiteit leiden als theoretici hun bladen vol formules opzijschuiven en de werkelijkheid als geheel beschouwen. Zelfs dan blijven andere reacties mogelijk. Ze zouden cynisch kunnen worden: wat heeft het voor nut om aan wetenschap te doen als we zelfs op het toppunt van ons inzicht nauwelijks iets begrijpen? Of sceptisch: begrijpen we er dan wel echt iets van, of maken we ons dat zelf wijs?

Het gaat bovendien niet om ‘het contrast tussen ‘bijna niets’ en ‘perfect inzicht’’, verduidelijkt De Dijn nog. Het gaat veeleer om het beleven van de confrontatie tussen onze gesofisticeerde wetenschap en het radicaal andere universum dat zich van ons begrip niets aantrekt, terwijl we er toch deel van uitmaken. Ook dat aspect klinkt door bij Vroman, in de laatste twee strofes van Een psalm voor dit heelal:

“Gij doet mij schrijven want ik maak
per ongeluk Uw beeld

Gij schrijft mij nooit, ik schrijf te vaak
en heb U weer verveeld.”

Denken met je handen

Deze column is eerder verschenen in Eos  (oktober 2018).

Vorige zomer kocht ik een spelcomputer voor mijn zoon, en stiekem ook voor mezelf. Er hangt geen stekker aan en er moeten geen batterijen in, want deze computer werkt met vallende knikkers. De Turing Tumble lijkt op een plastic flipperkast, die je zelf moet samenstellen. Er zit een verhaal bij over ruimte-ingenieur Alia die op planeet Eniac strandt. Daar treft ze een gigantische knikkercomputer aan die ze moet repareren. Ze ontdekt proefondervindelijk waar de verschillende componenten voor dienen, en via de opgaves in het boek valt ook jou dat parcours te beurt.

Bij het bord horen verschillende types componenten die een knikker doorgeven, van richting doen veranderen, of opvangen. Er is ook een component met een pijl die omklapt telkens er een knikker passeert. Met een rij van dergelijke pijlen kan je binaire getallen voorstellen. De knikkercomputer is dus toch digitaal.

De Turing Tumble is een tastbare manier om te leren debuggen. Als het grondig misgaat, stuiteren de knikkers heel de kamer door.

Eigenlijk is de knikkercomputer bedoeld voor spelers vanaf acht jaar, maar mijn zoon was er nog geen zes toen ik onderstaand filmpje maakte van ‘zijn’ systeem. Nog twee jaar wachten om het uit te testen: dat geduld kon ik niet opbrengen. Gelukkig zit er een heldere opbouw in de opgaves, waardoor ook jongere kinderen de eerste tien opgaves de baas kunnen.

Mijn zoontje vindt het geweldig. Met zijn vinger volgt hij welk pad de knikker zal volgen. Hij is even ongeduldig als ik. Als iets niet meteen duidelijk is, dan laat hij de knikkers rollen. Zo ziet hij meteen of zijn oplossing werkt of niet. Iedereen die ooit iets geprogrammeerd heeft, zal zijn aanpak herkennen. Mogen falen is belangrijk om te kunnen leren (zie ook hier en hier).

Turing Tumble in actie. In het begin zijn alle knikkers boven: blauw links en rood rechts. De opdracht was hier om afwisselend twee blauwe en twee rode knikkers beneden beneden te laten aankomen.

Nu verdwijnt het spel tijdelijk in de kast, om het later te herontdekken. En, ja, er valt nog veel te ontdekken. Terwijl mijn zoon pas aan de lagere school is begonnen, kijk ik zelf al een poort vooruit. In juli keurde de Vlaamse regering nieuwe eindtermen goed voor de eerste Denken met je handen graad van het secundair onderwijs. Nieuw daarbij zijn eindtermen voor STEM en computationeel denken.

“In onze schermverzadigde samenleving is het wel zo prettig om nog iets te leren met materiaal dat je kan vastpakken.”

Voor dat laatste bestaan allerlei apps, maar om algoritmes te leren bedenken of de principes van debuggen (testen en bijsturen) onder de knie te krijgen, heb je geen elektronische computer nodig. Met mechanische systemen lukt het ook. In onze schermverzadigde samenleving is het wel zo prettig om nog iets te leren met materiaal dat je kan vastpakken. Zulke tastbare hulpstukken horen er niet alleen voor kleuters te zijn. Ik hoop dat middelbare scholen aan de slag gaan met knikkercomputers.

Eén Turing Tumble kost momenteel 70 dollar, wellicht te duur voor de meeste scholen. Er bestaat een simulator voor, maar schermtijd kan je nuttiger besteden. Gelukkig zijn er offline alternatieven. Wie van houtjetouwtje-oplossingen houdt, kan zijn hart ophalen aan onderstaande video van Alex Gorischek. Het filmpje demonstreert het principe van logische poorten met behulp van touwtjes en gewichten.

Een voorbeeld: als je een touwtje over een spijker leidt en één uiteinde van dat touwtje naar beneden trekt, dan gaat het andere uiteinde omhoog. Anders gezegd: de input ‘laag’ wordt omgezet in de output ‘hoog’ – en omgekeerd. Dit is de essentie van een NIET-poort. Door touwtjes aan elkaar te knopen kan je een EN- en OF-poort bouwen. Die componenten kan je vervolgens combineren. De borden om touwtjes aan te hangen kunnen leerlingen maken in de werkplaats van hun (technische) school, wat het benodigde budget voor materialen stevig naar beneden brengt.

Bij de start van het academiejaar stel ik vast dat ik zelf bijzonder weinig concreet materiaal gebruik voor mijn vakken. Er is enkel een waarheidstafel in hout, die ik maakte voor een slechtziende student. Terwijl misschien ook andere studenten baat zouden hebben bij zo’n tactiel model. Bij wetenschappen zijn practica courant, maar voor wetenschapsfilosofie ligt dat minder voor de hand.

Misschien brengt de component wetenschapsgeschiedenis soelaas. Dit jaar vertel ik extra enthousiast over het mechanisme van Antikythera: een oud-Griekse, mechanische computer die onder andere zonsverduisteringen kon voorspellen. Er zijn enkel verweerde fragmenten van teruggevonden in een gezonken schip. Mijn hoop is dat sommige studenten het mechanisme zo graag in werking willen zien dat ze bereid zijn een replica te maken – een maakproject dat ik met alle plezier begeleid. Want zelfs filosofen mogen denken met hun handen.

Horrorverhaal in slow motion

Over onze blindheid voor trage veranderingen

Verschenen als column in Eos (oktober 2017).

‘Weet je wat gek is? Dag per dag lijkt er niets te veranderen. Maar snel genoeg is alles anders.’ Dat zegt Calvin tegen zijn knuffeltijger Hobbes in één van de strips van Bill Watterson. Herkenbaar is het zeker. Als je elke dag naar school of werk gaat, dan lijkt het of er aan de sleur nooit iets verandert. Maar als je afstudeert of van werk verandert en na enkele jaren terugkeert, dan blijkt er veel meer veranderd dan je ooit voor mogelijk had gehouden.

Calvin and Hobbes door Bill Watterson.

We kunnen het gras niet letterlijk horen groeien, zelfs al zien we na enkele dagen het verschil. Veel transformaties in ons leven voltrekken zich geleidelijk of in kleine stapjes. Als kleine stappen echter dezelfde richting uitgaan, dan kan het nettoresultaat overweldigend zijn. De Amerikaanse kunstenaar Jonathan Schipper confronteert ons met ons onvermogen om verandering in al haar details te vatten. In diverse galerijen stelde hij zijn project Slow Motion Car Crash voor. In een eerste versie liet Schipper twee miniatuurauto’s uiterst traag frontaal botsen. Vervolgens bouwde hij een levensgrote machine, die een echte auto tegen een muur liet crashen. De totale vernieling was bij voorbaat onvermijdelijk. Het publiek stond erbij, maar zag het niet gebeuren, omdat het hele proces een maand duurde.

Kunstencentrum STUK in Leuven kreeg de primeur voor de levensgrote versie van het kunstwerk – in 2008 was dat. Misschien was je er toen bij of las je erover in de krant, zoals ik. Sinds ik erover las, crasht die auto nog steeds uiterst traag in mijn hoofd. Niet in de loop van een maand, maar al bijna tien jaar.

Ik probeer te beseffen dat ook dat nog zeer snel is in vergelijking met geologische tijdschalen. De spanne waarin de aarde zich vormde, en het bestek waarin het leven via evolutie tot veelvormige oplossingen kwam voor overleven en voortplanten: vanuit dit perspectief is de moderne mens, samen met menselijke communicatie, nog maar pas op het toneel verschenen. Voor er mensen waren werd er op onze planeet nooit gepraat over het weer. Dat verandert in onze contreien voortdurend, terwijl er over langere periodes toch duidelijke trends en langlopende gemiddelden te ontdekken vallen. Die gemiddelden kunnen zelf ook veranderen, maar dat doen ze meestal traag. De klimaatverandering die we nu meemaken lijkt veel sneller te gebeuren dan wat de mensheid tot nu toe heeft meegemaakt. Anderzijds blijft ze te traag en te groot om er vat op te krijgen zonder hulpmiddelen, zoals systematische waarnemingen en klimaatmodellen.

Zo vormen klimaatwetenschappers zich een helder beeld van iets dat ook zij niet met een blik door het raam kunnen zien. Als niet-specialist hebben we nood aan hun verhalen om zelf tot een beeld te komen. In de zomer van 2017 schreef klimaatwetenschapper Kate Marvel een ‘horrorverhaal in slow motion’ over haar studiegebied.

“Om te beginnen hadden we onze planeet nooit ’Aarde’ mogen noemen.”

Ze start het verhaal als volgt: om te beginnen hadden we onze planeet, waarvan het oppervlak voor driekwart uit zoutwater bestaat, nooit ’Aarde’ mogen noemen. Als we iets dumpen in de zee verwachten we het nooit meer terug te zien; toch spoelen er geregeld spullen aan. En al zo lang lozen we zo veel extra broeikasgassen in de atmosfeer. Vroeg of laat krijgen we ook dat terug. De oceanen en de atmosfeer fluisteren voortdurend tegen elkaar – wat ze dan vertellen, verandert geleidelijk door onze impact. Een kind dat op het strand loopt, beseft de gevaren van de diepte niet, schrijft Marvel. We moeten het vertellen dat er een monster in de diepte huist. ‘Dat weten we. Want we hebben het daar zelf gestopt.’

Het is alsof de Slow Motion Car Crash versnelt, hoewel ook die versnelling vooralsnog onmerkbaar klein is. De afloop is echter niet onvermijdelijk: we zijn allemaal onderdeel van de machine. Wat we nu doen heeft weliswaar pas effect in de toekomst. Onze maatschappij lijkt niet goed georganiseerd om op dit soort tijdschalen beslissingen te nemen. Maar ook dat is te veranderen: met vele kleine stappen kunnen we iets groots bereiken.

Tegen ééndimensionaal denken

Dit opiniestuk verscheen vandaag op de website van De Morgen.

Wat voorafging: er verscheen een open brief “Recht op menselijkheid gevraagd”, die ik mee ondertekende. Maarten Boudry reageerde hierop met een opiniestuk (DM 11 juni 2018). Dit is mijn antwoord op zijn argumenten.

“Ik ben van afstamming een Jood, van staatsburgerschap een Zwitser en van gezindheid een mens en enkel een mens, zonder bijzondere voorliefde voor eender welke staats- of nationale structuur.” Na deze obligate opening met een citaat van Einstein uit 1918, wil ik reageren op Maarten Boudry.

Primigravida is medisch jargon voor een vrouw die voor het eerst zwanger is. Toch zou het bevreemdend zijn als een arts een aanstaande moeder zo aansprak. Evenzo is er een verschil tussen het gebruik van “migratoire stromingen” in een wetenschappelijke context of het occasionele gebruik van “golf” om mensen te beschrijven enerzijds en het systematische gebruik van collectieve benamingen om een sterk geëxternaliseerd perspectief te creëren anderzijds.

Dat “de becijfering van het kostenplaatje van migratie ‘dehumaniserend’ zou zijn” noemt Boudry belachelijk: “Als dat klopt, dan worden ook senioren ‘ontmenselijkt’ in het debat over de ‘kosten’ van de vergrijzing”. Terwijl hij het argument in het absurde wil trekken, legt hij hier het onderliggende probleem bloot. Ja, het is courant om vraagstukken tot een financiële dimensie te reduceren, maar dat maakt het niet correct. Als fysicus verbaas ik er me voortdurend over dat in discussies over multidimensionale fenomenen – van energie tot gezondheidszorg – alles tot één dimensie wordt herleid. En als het over mensen gaat, doet énkel vragen wat dat gaat kosten (of opbrengen) inderdaad afbreuk aan de menselijke waardigheid. Of het nu jongeren of ouderen betreft, of vluchtelingen.

Boudry kaart aan dat er ergere vormen van dehumanisatie zijn – wat niemand ontkent en wat we ook juist willen voorkomen – en dat een specifieke vorm ervan via salafistische schoolboeken en radicale predikers geïmporteerd wordt. Radicale ideeën kunnen zich verspreiden zonder dat individuen migreren, online sneller dan ooit, dus dat probleem is er in elk geval. Polarisatie werkt radicalisering in de hand, dus dat kan alvast niet de oplossing zijn.

Onze open brief waarschuwde voor een “nieuw normaal waarin academici onder druk geen standpunten meer durven in te nemen”. Boudry vindt deze claim zelf-ondermijnend: meer dan duizend hebben getekend, volgens hem “zonder enige angst voor repercussies.” Als het feit dat we geen mazelen krijgen bewijst dat vaccinatie overbodig was, dan klopt zijn redenering. Bovendien meent Boudry de emoties van meer dan duizend collega’s feilloos te kunnen navoelen. Als ervaren polemist onderschat hij de angst. Pas na initiële terughoudendheid, besefte ik: als wij al niet meer durven schrijven over iets, waar ook Boudry van vindt dat je er moeilijk tégen kan zijn, dan wordt het hoog tijd om het juist wel te doen.

Bedrijfsleiders hebben gemiddeld andere politieke opvattingen dan verpleegkundigen, dokwerkers of academici. Deze correlaties zijn begrijpelijk, maar kunnen soms kwalijke gevolgen hebben. Stel dat politicus worden sterk zou correleren met één politieke strekking, dan was er te weinig oppositie, wat de democratie verzwakt. Boudry poneert dat een analoog probleem zich daadwerkelijk stelt in de humane en sociale wetenschappen. Er loopt onderzoek naar de mogelijke ondervertegenwoordiging van bepaalde socio-economische ideeën in specifieke onderzoeksgebieden – moeizaam, omdat het zelf niet zonder bias kan worden uitgevoerd. Ik ben het met Boudry eens dat dit aandacht verdient, al zie ik hier voortschrijdend inzicht binnen de wetenschappelijke wereld.

Tot slot is de open brief geen wetenschappelijk rapport en staat het voor veel ondertekenaars los van hun specialisme. Boudry’s suggestie dat deze ideeën courant zijn onder academici verklaart mogelijk dat uitgerekend zij met deze boodschap komen. Uit hun instemming met deze brief volgt echter niet dat de ondertekenaars in hun werk te homogeen zouden denken. En het toont al helemaal niet aan dat deze boodschap niet relevant zou zijn voor de bredere maatschappij, integendeel.

Heldhaftig schommelen

Deze column zal verschijnen in het juni-nummer van Eos.

Heldenland.Helden is een programma op Ketnet voor negen- tot twaalfjarigen. Ze kwamen bij mij aankloppen met de vraag of het mogelijk is om helemaal rond te gaan op een gewone schommel. De Helden zijn namelijk een speeltuin aan het bouwen in Tienen met spectaculaire versies van klassieke speeltoestellen: Heldenland.

Als fysicus zie ik de schommel als een slinger. Daarbij beweeg je steeds op een cirkelboog. Bovendien zijn er twee punten van de baan waar je snelheid even nul wordt: op de uiterste punten, waar je bewegingsrichting omkeert. Stel nu dat je op de een of andere manier tot boven het ophangpunt bent geraakt en dat je snelheid daar nul is. De krachten die op je inwerken zijn de zwaartekracht, recht naar beneden, en die van de ophanging. En daar knelt de schoen.

Bij een gewone schommel hangt het zitje namelijk op aan kettingen of touwen. Die kunnen niet duwen, enkel trekken, en zullen je daarboven dus niet op een cirkelbaan houden. Met een emmer aan een touw demonstreerde ik dat je dan recht naar beneden valt, tot het touw weer gespannen staat, waardoor je een harde ruk krijgt.

Als je snel genoeg draait, kan de emmer aan het touw wel 360 graden rond: held Nico mocht dit demonstreren met water in de emmer. Overkop gaan op een gewone schommel zou dus wel mogelijk zijn als je er een motor op monteert die je heel snel laat draaien. Maar dat is onverantwoord voor Heldenland. En je kunt het ook niet echt meer schommelen noemen.

De volgende vraag was hoe het komt dat we kriebels voelen op een schommel. De organen in onze buik liggen als het ware op elkaar, maar die druk voelen we gewoonlijk niet. Als we vallen, of hoog schommelen, is er – tijdelijk – niets dat ons tegenhoudt. We bewegen dan mee met de zwaartekracht. Die kracht zelf voelen we niet. Wel merken we dat iets er niet meer is: namelijk de tegendruk van de grond onder onze voeten en van de onderste organen die de bovenste tegenhouden. De zenuwen in de buik registreren normaal een constante druk, die nu wegvalt. Het is zoals wanneer je buitenkomt van een feest waar veel lawaai was en je plots de stilte ‘hoort’.

Tijdens het schommelen variëren de tegendruk en de hoeveelheid kriebels. Als je op een weegschaal zou kunnen staan tijdens het schommelen, dan zou je het aangegeven gewicht zien stijgen en dalen. Kriebels verwacht je op het moment dat de weegschaal het minste aangeeft: rond de keerpunten van de baan. Met een langer touw krijg je een langer stuk waar je bijna recht naar beneden gaat. Dan verwacht je ook meer kriebels.

In 1998 hebben een wiskundige, een fysicus en een ingenieur van de Amerikaanse Cornell University een artikel van tien pagina’s geschreven waarin ze uitrekenden hoe je jezelf het best hogerop werkt op een schommel: je moet energie in de slingerbeweging pompen door je zwaartepunt op de juiste momenten te verplaatsen. Zittend doe je dat door je horizontaal uit te strekken bij het naar voor bewegen en rechtop te zitten met opgetrokken benen tijdens het naar achter bewegen. Staand moet je van het hoogste punt naar het laagste bukken en dan rechtop gaan staan tot het hoogste punt – en dit zowel tijdens het naar voor als naar achter gaan. Als je echt hoog wil raken, is staand schommelen de beste techniek. Staand heb je immers dubbel zoveel pompwerking en de hoogte van het zwaartepunt verschilt sterker.

Kiiking.

Kiiking: in Estland is schommelen een sport!

Dat hebben ze in Estland goed begrepen. Daar doen ze namelijk wel aan over de kop schommelen. Ze gebruiken schommels met metalen staven in plaats van kettingen, waardoor het mogelijk is om tot boven het ophangpunt te schommelen. Ze doen dit staand en vastgemaakt aan een voet. Kiiking heet deze sport, want dat is het: het is fysiek zwaarder om boven te geraken naarmate de staven langer zijn. Het Guinnesswereldrecord voor een volwassen man staat op staven van meer dan 7 meter. Voor kinderen zijn de staven natuurlijk korter, maar heldhaftig blijft het.

  • Je kan aflevering 15 van Heldenland (over waarom je geen 360° rond kan op een gewone schommel) bekijken op Ketnet.
  • Zelf online met slingers experimenteren kan hier en hier. En met een chaotische, dubbele slinger kan dat hier.

Aanvulling (9 mei 2018):

  • Ook aflevering 16 van Heldenland (over kriebels in de buik) staat nu op Ketnet.

Tweede kans voor wiskunde

Dit opiniestuk is op 2 mei 2018 verschenen op knack.be, naar aanleiding van mijn college voor Universiteit van Vlaanderen.

‘Ik zou in een wereld willen leven waarin volwassenen avondlessen wiskunde volgen’

Professor wetenschapsfilosofie Sylvia Wenmackers wil in een wereld leven waarin avondles wiskunde voor volwassenen even populair is als Engels of Italiaans. Maar daarvoor moet de manier waarop wiskunde onderwezen wordt veranderen…

Wiskunde.

Foto van Allef Vinicius (via Unsplash).

Stel je een school voor waar het volgende gebeurt:

Elke ochtend moeten leerlingen hun spiegelbeeld vergelijken met de Instagram-feed van een internationaal modellenbureau. De modellen zijn geselecteerd uit de hele wereldbevolking. Ze worden gemaquilleerd, gekleed en gefotografeerd door professionelen. Van elke shoot wordt minder dan 1% van de beelden bewaard en die selectie wordt stevig nabewerkt. Uit de bewerkte foto’s kiest een curator welke vrijgegeven worden. Maar dat hele proces wordt niet uitgelegd aan de leerlingen.

Dit scenario is gelukkig fictief, maar het lijkt verrassend veel op de manier waarop wiskunde vandaag onderwezen wordt.

Wiskunde wordt namelijk zeer ahistorisch gedoceerd. Dat is eigen aan het vakgebied: mislukte pogingen worden in latere samenvattingen niet meer opgenomen, waardoor de wiskunde in handboeken een lange triomftocht lijkt. Stelling – bewijs, stelling – bewijs, stelling – bewijs. Bij sommige stellingen hoort een naam; sommige namen komen opvallend vaak voor (zoals Euler, Gauss en Fermat). Het is even gemakkelijk om je een mislukking te voelen in vergelijking met die fictieve geschiedenis, als om je een lelijk eendje te voelen op onze fictieve school. Uit zelfbescherming haken veel leerlingen dan ook af: ‘Ik heb geen wiskundeknobbel, geef mij maar talen’.

Als leerlingen aan een oefening beginnen, lukt het hen vaak niet om die meteen op te lossen. Het is zo jammer dat we hen niet tonen dat dat perfect normaal is. Wiskundigen en wetenschappelijke onderzoekers zitten ook vaak vast. Het grootste verschil tussen onderzoekers en anderen is dat die eersten hiertegen bestand zijn. Ze vertrouwen op hun eigen kunnen, hebben een netwerk om raad aan te vragen en weten uit ervaring dat de aanhouder vaak wint.

De leerlingen op de fictieve school zouden veel baat hebben bij uitleg over hoe de fotoreeks tot stand komt. Dit zou hun zelfbeeld ten goede komen. Om dezelfde reden zouden we leerlingen veel beter moeten uitleggen hoe wiskunde en wetenschap tot stand komen.

Blunderboek

Mijn eigen onderzoek gaat over filosofie van de kansrekening. In de geschiedenis hebben opvallend veel wiskundigen geblunderd op het vlak van kansen. Terwijl meetkunde al bij de Oude Grieken ontwikkeld werd, heeft het tot de zeventiende eeuw geduurd voor wiskundigen tot een theorie over kansen kwamen. Dit gebeurde op vraag van een Franse schrijver, die zich Chevalier de Méré liet noemen – een fervent gokker. Pascal en Fermat probeerden in een briefwisseling zijn vragen over kansspelen op te lossen. In hun correspondentie zien we vooral Pascal worstelen om grip te krijgen op het concept kans. Het is ook in deze context dat de beroemde driehoek van Pascal voor het eerst opduikt. Precies dit soort voorbeelden bieden een waardevolle aanvulling op het wiskundecurriculum.

Stel nu eens dat de twee hoofddoelen van wiskunde op school zouden zijn: leerlingen wiskundige basisvaardigheden meegeven (zoals nu) én hen een realistische en waarderende houding ten aanzien van wiskunde bijbrengen. Dat tweede doel zou ervoor zorgen dat ex-leerlingen in hun latere leven open blijven staan om zich wiskundige denkpatronen eigen te maken, ten minste te proberen een vraag met wiskundige middelen te analyseren en als dat niet lukt erover te praten of doelgericht hulp te zoeken. Als dit tweede doel verwaarloosd wordt, leren wiskundelessen vooral hulpeloosheid aan: de leerkracht weet het antwoord al, dus als leerling moet je gewoon afwachten tot het enige juiste antwoord aan bord komt. Zelfs een rekenmachine kan het antwoord geven, als je maar zou weten hoe het vervloekte bakje werkt. Wat er ontbreekt is plantrekkerij, samenwerking en waardering daarvoor. Ondertussen blijven er antwoorden komen op vragen die je je nooit hebt gesteld.

Ik zou in een wereld willen leven waarin volwassenen avondlessen wiskunde kunnen volgen, net zoals ze nu een extra taal kunnen leren. Dat wil zeggen: een wereld waar daar vraag naar is. Een wereld waarin wiskunde gezien wordt voor wat het is: een integraal deel van de menselijke cultuur.

Wiskundehaat?

Op de middelbare school is wiskunde een groot vak, net zoals Nederlands. Bij Nederlands krijgen leerlingen allerlei opdrachten: een boek lezen van een bekroond auteur, een groepswerk maken, zelf een gedicht schrijven, de grammatica van een zin analyseren en de herkomst van de eigen voor- en familienaam opzoeken in de bibliotheek. Vaak is het handboek thematisch, zodat het voor leerlingen lijkt alsof het bij Nederlands over eender wat kan gaan. Ondertussen worden woordenschat, grammatica en geschiedenis aangeleerd. Soms wordt er ook geoefend op direct toepasbare vaardigheden, zoals het schrijven van een sollicitatiebrief.

Wiskunde is anders. De werkvormen zijn minder gevarieerd. Er is weinig aandacht voor topwiskunde of de wiskundige cultuur van een tijd. Er zijn nauwelijks open opdrachten, waarbij meerdere oplossingen mogelijk zijn. Stelling – bewijs, stelling – bewijs, stelling – bewijs. Door het monotone lespatroon blijft er van het aangeleerde op lange termijn weinig hangen. Het emotionele register is hoofdzakelijk negatief georiënteerd. Terwijl de wiskunde zelf – als vakgebied, maar niet als schoolvak – ruimte laat voor zo veel meer emoties: nieuwsgierigheid, verwondering en verbondenheid.

Wiskundeleerkracht Larry Martinek uit Los Angeles in de Verenigde Staten verwoordt het als volgt: ‘Kinderen haten geen wiskunde. Wat ze haten is verward, geïntimideerd en in verlegenheid gebracht worden door wiskunde. Met begrip komt passie, en met passie komt groei – een schat wordt ontgrendeld.’

Wiskunde heeft een rijke geschiedenis en laat ruimte genoeg voor exploratieve opdrachten naast de repetitieve, die ook nodig zijn om vaardigheden in te oefenen. Ik vind het inspirerend dat wiskundeleerkrachten wereldwijd ideeën uitwisselen over hoe ze hun eigen passie voor het vak kunnen overdragen aan de nieuwe generatie. Op Twitter kan ik de volgende mensen van harte aanraden: Eugenia Cheng (@DrEugeniaCheng, auteur van How to bake π en Beyond Infinity), Matt Enlow (@CmonMattTHINK) en Dave Richeson (@divbyzero). Twee inspirerende hashtags zijn #MathArt en #tmwyk (talk math with your kids).

TegenSTEM

Met projecten over STEM wordt geprobeerd om de verbanden tussen vakken als wiskunde, fysica, chemie en informatica duidelijker te maken. Dat is een lovenswaardig doel, maar helaas werkt het in de praktijk polarisering in de hand tussen ’talenmensen’ en ‘cijferaars’. De huidige campagnes lijken STEM namelijk boven andere vakken te verheffen. Terwijl er net over die grenzen heen nog zo veel inspiratie en leerwinst valt te halen.

Mijn eigen fascinatie voor fysica ontstond bijvoorbeeld door te lezen: eerst sciencefiction en daardoor steeds meer populairwetenschappelijke boeken. Zij gaven mij voor het eerst een beeld van het leven als onderzoeker: de interacties tussen mensen, het proberen, het falen en het sporadische succes. Daar ligt niet alleen de bron voor mijn studiekeuze (fysica), maar het gaf me ook de extra dosis moed om door te zetten op momenten dat ik een triviale oplossing niet zag: ‘Wiskunde is nu eenmaal moeilijk, maar moeilijk gaat ook’.

Het is mijn hoop dat er taalleerkrachten zijn die op hun leeslijst enkele boeken willen opnemen die relevant zijn voor STEM: denk aan Flatland bij Engels, of waarom geen non-fictie? Er zijn prachtige biografieën over wetenschappers. Het is hoog tijd dat taalleerkrachten en STEM-leerkrachten meer samenwerken.

Atoomklokken hebben hun beste tijd gehad

Dit artikel is eerder verschenen in Karakter.

Karakter.Het meten van de tijd heeft de mens altijd al gefascineerd, en door de eeuwen heen werden steeds preciezere methoden ontwikkeld. De huidige klokken worden alle gesynchroniseerd aan de hand van atoomklokken, maar ook die zijn stilaan voorbijgestreefd. De verwachting is dat er binnenkort nog betrouwbaarder klokken zullen bestaan, die de definitie van de seconde opnieuw zullen aanscherpen.

Het meten van de tijd begon toen mensen zich bewust werden van relatief trage, maar regelmatige processen, zoals de schijnbare positie van de zon, de maan en de sterren. Daarnaast werden waterklokken, kaarsen en zandlopers gebruikt om tijdsintervallen te bepalen. De eerste mechanische klok, die werkte via vallende gewichten, ontstond aan het einde van de dertiende eeuw. In de zestiende eeuw ontwikkelde men een binnenwerk dat opwindbaar was met een veer, en in 1657 verkreeg Christiaan Huygens een patent op het slingeruurwerk. Aanvankelijk waren mechanische uurwerken prestigeobjecten, maar gaandeweg werden ze kleiner en betaalbaarder en zo verschenen ze in elk huishouden. Met een zakhorloge of polsuurwerk kon iemand meerdere afspraken op een dag inplannen. Zo zorgde de vooruitgang in tijdsmeting er indirect voor dat we het veel drukker kregen. Ondertussen worden al onze klokken, direct of indirect, gesynchroniseerd aan de hand van atoomklokken, maar ook die zijn stilaan voorbijgestreefd. Verwacht wordt dat de volgende generatie klokken zelfs voor een herziening van de definitie van de seconde zal zorgen.

Het lijkt aannemelijk dat het ontwikkelen van steeds preciezere klokken een diep inzicht vereist in de aard van de tijd zelf. De geschiedenis toont echter aan dat tijdsmeting zich gestaag bleef ontwikkelen, ondanks revolutionaire verschuivingen in wat theoretici met ‘tijd’ bedoelen. Newton definieerde de tijd als een absoluut en gelijkmatig continuüm, maar welbeschouwd kunnen onze klokken die absolute tijd helemaal niet afmeten. Klokken werken slechts relatief, steunend op processen waarvan we uit ervaring weten dat ze voldoende gelijkmatig verlopen. In de moderne natuurkunde is de newtoniaanse idee dat er een absoluut ‘nu’ is (overal in het universum) inmiddels verlaten. Sindsdien zijn fundamentele fysische theorieën tijdloos, maar enkele onderzoekers blijven op zoek gaan naar de verloren tijd.

Uurwerk.

Mechanische klokken waren ooit prestige-objecten, gereserveerd voor torens en chique interieurs. (Bron afbeelding.)

(1) Wetenschappelijke tijd

De uitvinding van de slingerklok gebeurde tijdens een periode die we nu de wetenschappelijke revolutie noemen. Door de waarneming van de zogenaamde vaste sterren hadden vroege beschavingen al vastgesteld dat de zonnedag in de loop van het jaar geleidelijk lengt en kort, maar pas met de zeventiende-eeuwse slingerklok kon deze oneffenheid ook zonder astronomische waarnemingen worden aangetoond.

Tijd als substantie bij Newton

Isaac Newton vond deze mijlpaal belangrijk genoeg om hem in 1687 te vermelden in zijn hoofdwerk Philosophiæ Naturalis Principia Mathematica, kortweg de Principia. Aan het begin van dit werk, net voor de befaamde bewegingswetten, heeft Newton een Scholium ingelast. Daarin licht hij onder meer zijn visie op de tijd toe: absolute, ware en wiskundige tijd vloeit uit zichzelf en vanuit de eigen natuur. Newton benadrukt vooral wat tijd volgens hem niet is: tijd is niet relatief, hangt niet af van iets anders. We kunnen tijd niet rechtstreeks ervaren, maar hij wordt wel afgemeten met behulp van tastbare dingen, zoals de grootte van voorwerpen, hun posities, lokale bewegingen en uniforme veranderingen. De meeste mensen verwarren deze maten, zoals dagen, maanden en jaren, met hetgeen waaraan gemeten wordt: de tijd zelf. Ook in het woordenboek Van Dale vinden we nog de uitspraak ‘de klok wijst de tijd aan’, terwijl een fysicus eerder zal zeggen: ‘een klok meet verstreken tijdsduur’.

Huygens.

Newton achtte de slingerklok van Huygens belangrijk genoeg om hem in de Principia te vermelden. (Bron afbeelding.)

Tijd bestaat volgens Newton als een onafhankelijke substantie. Het idee van absolute ruimte en tijd komt al voor in een boek van de Engelse neo-atomist Walter Charleton, dat verscheen toen Newton twaalf jaar was en dat hij als student gelezen heeft. Newton had bovendien theologische redenen om absolute tijd te omarmen. Om de conclusie te vermijden dat God zelf veranderd zou zijn door de materiële wereld te scheppen, moest hij veronderstellen dat ruimte en tijd oneindig en absoluut zijn – emanaties van een alomtegenwoordige en alwetende God. In de Principia vermeldt Newton echter geen theologische motieven, maar geeft hij louter empirische argumenten.

Tijd als relaties bij Leibniz

Tijdgenoot Gottfried Wilhelm Leibniz was echter niet overtuigd door Newtons empirische argumenten voor absolute ruimte en tijd. Volgens hem was tijd enkel gedefinieerd via temporele relaties tussen materiële voorwerpen in het universum: dergelijke relaties vereisen geen absolute tijd en in een leeg universum zou er ook geen tijd zijn. De absolute tijd en ruimte van Newton zijn zelf niet waarneembaar, wat op zich nog geen bezwaar was voor Leibniz, maar kwalijker vond hij dat ze ook geen observeerbare effecten hadden. Newton wees onder andere op het gedrag van water in een draaiende emmer, dat hoger staat aan de randen, maar zijn voorbeelden tonen in feite alleen aan dat absolute versnelling bestaat. Er leek geen gulden middenweg te zijn tussen de opvattingen van Newton en Leibniz: absolute versnelling behouden zonder absolute tijd en ruimte te veronderstellen leek onmogelijk. Daar komen we nog op terug.

(2) Een seconde uit de oude doos

Zelfs als we een absolute tijd veronderstellen, zoals Newton deed, betekent dit nog niet dat we die ook ergens kunnen aflezen. Om een tijdsduur te bepalen vergelijken we die met processen waarvan we weten dat ze zeer regelmatig zijn, zonder ooit de garantie te krijgen dat ze absoluut regelmatig zijn. Zelfs de seconde, die in het dagelijkse leven misschien een absolute standaard lijkt, kan alleen relatief worden gedefinieerd. Het Internationale Stelsel van Eenheden (SI) legt sinds 1960 uniforme standaardeenheden vast voor natuurkundige grootheden. De SI-eenheid van tijd is de seconde, maar de definitie ervan is sinds de eerste editie wel veranderd, door evoluties in natuurkundige kennis en technisch vernuft. Tot 1967 werd de seconde gedefinieerd als de duur van een gemiddelde zonnedag gedeeld door 24 x 60 x 60. Door variaties in de duur van het jaar en dus de gemiddelde zonnedag was die definitie echter variabel en dus niet optimaal. Sinds 1967 hanteert het SI dan ook een andere definitie: een seconde is de tijdsduur waarin de straling geabsorbeerd door en uitgestraald door een cesiumatoom 9 192 631 770 periodes doorloopt. Die definitie is alleen praktisch zinvol doordat we intussen voldoende nauwkeurige en reproduceerbare middelen hebben om dit te bepalen: cesiumklokken. De verwachting is bovendien dat er binnenkort nog preciezere en betrouwbaardere klokken voorhanden zullen zijn, waardoor de definitie van de seconde andermaal aangescherpt kan worden.

Nanoseconden.

Een bussel netonseconden. Computerwetenschapper en Amerikaans legerofficier Grace Hopper had vaak stukken van 30 cm ouderwetse telefoonkabel op zak: de afstand waar licht (in vacuüm) in circa één nanoseconde langs flitst. (Bron afbeelding.)

Eerste digitale klok had analoge wijzerplaat

De grootste winst in nauwkeurigheid kan worden behaald door een trilling te gebruiken met een drastisch hogere frequentie. Sneller getik correspondeert met kortere periodes en veelal ook met uitwijkingen op een kleinere schaal, wat telkens voor nieuwe technische uitdagingen zorgt. Eens er een werkend prototype is, kan het worden geoptimaliseerd. Het is zaak om beïnvloeding door de omgeving te minimaliseren, bijvoorbeeld door voor een constante, lage temperatuur te zorgen. Bovendien kan de statistische fout worden verlaagd door het gemiddelde tijdsverloop van meerdere klokken te bepalen.

Laat ons, alvorens de hightech in te duiken, nog even terugkeren naar de essentie: hoe kunnen mechanische klokken worden gebruikt om de hoeveelheid verstreken tijd te meten? Dit gebeurt doordat ze gebruikmaken van een voldoende regelmatige, mechanische beweging, bijvoorbeeld een slingerbeweging, en omdat ze een binnenwerk bevatten dat periodes ‘telt’ of veelvouden ervan aangeeft op een wijzerplaat. Een belangrijke tussenstap tussen mechanische klokken en hedendaagse atoomklokken was het kwartsuurwerk, dat voor het eerst ontwikkeld werd in 1927 in de Bell Laboratoria. Hierbij wordt de regelmatige beweging geleverd door een kwartskristal, dat een typische frequentie heeft rond 33 kHz: dat betekent dat het kristal per seconde circa 33 000 periodes doorloopt. Kwarts is piëzo-elektrisch, waardoor de mechanische trillingen tot even snelle elektrische variaties leiden, die uitgelezen worden met een elektronisch circuit. Alle kwartshorloges zijn dus eigenlijk digitaal, ongeacht of ze een analoge wijzerplaat of een lcd-scherm hebben.

Cesium-fonteinklokken

De volgende stap was de ontwikkeling van een atoomklok op basis van cesium: dit gebeurde voor het eerst in 1955. De nauwkeurigheid nam aanvankelijk elk decennium met een factor tien toe. De huidige nauwkeurigheid van deze atoomklokken is zo goed dat de afwijking slechts 0,02 nanoseconden per dag bedraagt. Dat correspondeert met 30 seconden in 4,5 miljard jaar, de huidige leeftijd van de aarde. De meest courante atoomklokken gebruiken de isotoop cesium-133. Ze detecteren de straling die correspondeert met de overgang tussen twee specifieke energieniveaus. De frequentie van die microgolfstraling wordt gebruikt voor de huidige definitie van de seconde. Cesiumklokken gebruiken vele cesiumatomen om de statistische onzekerheid te verlagen. Door kleine storingen treden er echter dopplereffecten op, die de frequentie beïnvloeden en de klok minder nauwkeurig maken. In de jaren 1990 werd een oplossing gevonden door een fonteinklok te maken: een laser stuurt gekoelde cesiumatomen omhoog, die vervolgens weer neervallen. De dopplereffecten tijdens de op- en neergaande beweging vallen zo tegen elkaar weg. Het is een netwerk van dergelijke cesium-fonteinklokken dat gebruikt wordt om de universele standaardtijd te bepalen. Een nauwkeurige universele tijd is nodig voor synchronisatie van gps- en telecommunicatiesatellieten en internetservers, maar ook voor telescopen en andere fundamentele onderzoeksdoeleinden.

Optische roosterklokken

Bij de huidige generatie atoomklokken is er nog weinig ruimte voor verbetering van de nauwkeurigheid en reproduceerbaarheid omdat men op fundamentele beperkingen stuit. Daarom wordt er nu onderzoek gedaan naar alternatieven die deze beperkingen kunnen omzeilen. Dat gebeurt onder andere bovenop de meridiaan van Parijs: daar staat namelijk het Observatorium van Parijs. Jérôme Lodewyck (zie onderaan: bron 1) staat er aan het hoofd van het laboratorium voor referentiesystemen van tijd en ruimte, waar zijn team aan een nieuwe generatie atoomklokken werkt. Terwijl cesiumklokken met microgolven worden aangestuurd en uitgelezen, doet men nu onderzoek naar atoomklokken die werken met laserstraling in of nabij het zichtbare deel van het elektromagnetische spectrum. Dit worden optische klokken genoemd. Rond 2008 werden op basis van één aluminium-ion of één kwik-ion de eerste optische klokken gemaakt, waarbij de nauwkeurigheid van cesiumklokken met een grootteorde overtroffen werd. Men tracht optische atoomklokken verder te verbeteren door duizenden atomen of ionen tegelijk te meten. Daartoe worden ze gefixeerd in een staande golf van krachtig laserlicht, waarbij de atomen als eieren in een eierdoosje vallen. Klokken die volgens dit principe werken, worden in het Engels ‘optical-lattice clocks’ (OLC’s) genoemd: optische-roosterklokken dus. Hiervoor worden doorgaans strontium- of ytterbiumatomen gebruikt, die een bruikbare frequentie hebben in het nabije infrarood.

Een probleem bij het maken van de nauwkeurigste klok ooit is dat er geen externe referentie bestaat om de nieuwe klok mee te vergelijken. Pas toen de Parijse groep in 2011 een tweede strontium-OLC gebouwd had, werden enkele problemen duidelijk. Zo bleek dat er zich statische elektriciteit opbouwde op de vensters van de vacuümkamer, wat intussen opgelost is door die ramen met uv-licht te bestralen. Daarna liepen beide OLC’s vrijwel perfect synchroon, met een verschil van de orde 10^-16. De uitlezing van deze klokken vroeg nieuwe ontwikkelingen, aangezien elektronische circuits de vereiste frequentie niet halen. Om een wereldwijd netwerk van deze klokken te maken, wordt er gewerkt aan een bekabeld alternatief voor de huidige satellietverbinding. Er loopt ook onderzoek naar OLC’s op basis van kwik en magnesium die nog hogere frequenties hebben, maar waarvoor uv-lasers nodig zijn, die voorlopig nog niet alle vereiste karakteristieken halen. En voor al die optische klokken zijn ook verdere verbeteringen in koeltechnieken nodig, onder meer om de lasercaviteit en dus de golflengte zo stabiel mogelijk te houden. De beoogde afwijking van OLC’s is slechts één seconde in 13,8 miljard jaar, de huidige leeftijd van het heelal. Eens die technologie voldoende reproduceerbaar is, wordt verwacht dat de definitie van de seconde hieraan zal worden aangepast. Fysici kijken vooral reikhalzend uit naar nieuwe mogelijkheden om fundamentele vragen te onderzoeken, zoals de vraag of ‘natuurconstanten’, waaronder de fijnstructuurconstante, minuscule variaties vertonen. En voor nog hogere precisie, beter dan 10-18, wordt er gedacht om trillingen in kernen te gebruiken, in plaats van elektronische overgangen, maar dit is echt wel toekomstmuziek.

Tegeltje.

Wetenschappelijk verantwoorde tegeltjeswijsheid.

(3) Tijd bevroren in het blokuniversum

Tijdens alle inspanningen om tijdsduur steeds nauwkeuriger te meten ging de dimensie tijd zelf in de hedendaagse fysica een minder centrale rol spelen dan tijdens de wetenschappelijke revolutie.

Vierdimensionale ruimtetijd

Nadat Albert Einstein zijn speciale relativiteitstheorie had gepubliceerd gaf Hermann Minkowski er in 1908 een elegante herformulering van in termen van een vierdimensionale voorstelling: de ruimtetijd, door filosofen soms blokuniversum genoemd. De vierdimensionale ruimtetijd is ook belangrijk in de algemene relativiteitstheorie, waarbij kromming van de ruimtetijd samenhangt met gravitatie, maar dat is voor dit verhaal van minder belang.

De speciale relativiteitstheorie suggereert een bepaalde visie op het concept tijd, die filosofen eternalisme noemen. Daarin gaat de tijd niet voorbij en zijn verleden, heden en toekomst even echt. Uit Einsteins speciale relativiteitstheorie blijkt namelijk dat gelijktijdigheid afhangt van de bewegingstoestand van de waarnemer en dus relatief is: er is geen universeel ‘nu’ en dit zet de intuïtief aannemelijke visie dat alleen het heden echt is (presentisme) onder druk. Denkend aan een overleden vriend scheen Einstein troost te vinden in het eternalisme. Hij noemde het onderscheid tussen verleden, heden en toekomst slechts een hardnekkige illusie.

Neo-newtoniaans model

Eens je met het blokuniversum vertrouwd bent, vergt het weinig fantasie om ook de oudere, newtoniaanse fysica in termen van een vierdimensionale ruimtetijd te herformuleren. Met iets meer inspanning kun je zo zelfs een onvolkomenheid van de newtoniaanse fysica wegwerken. De Franse wiskundige Élie Cartan stelde in de jaren 1920 een neonewtoniaanse ruimtetijd voor. In tegenstelling tot de speciale relativiteitstheorie heeft de ruimtetijd van Cartan wel absolute gelijktijdigheid en geen maximumsnelheid. En net als de ruimtetijd van de algemene relativiteitstheorie is de cartaniaanse ruimtetijd gekromd. In deze neonewtoniaanse oplossing worden alleen versnellingen als absoluut voorgesteld, maar tijdstippen of snelheden niet. Dit lijkt een elegante oplossing die Leibniz had kunnen bekoren, maar zeker is dat niet, want ook bij Leibniz speelden er metafysische en theologische overwegingen mee.

Smolin op zoek naar de verloren tijd

Wel zeker is dat een aantal hedendaagse natuurkundigen ontevreden is over de bijrol die tijd lijkt te spelen in de hedendaagse theoretische fysica – een rol die in schril contrast staat met die in het dagelijkse leven en in de technologie, die al blijkt uit de geschetste zoektocht naar een nieuwe generatie klokken. Lee Smolin is zo’n theoreet die op zoek is naar de verloren tijd. Net als vele collega’s werkt hij aan een schijnbaar ongerelateerd vraagstuk uit de theoretische fysica: hoe is quantummechanica te verzoenen met gravitatie? Smolin werkt aan loop quantum gravity, als poging om deze vraag op te lossen. Daarnaast schrijft hij populariserende boeken over fysica. In zijn boek Time Reborn uit 2013 (zie onderaan: bron 2) bindt hij de strijd aan met het eternalisme en roept hij op tot een wedergeboorte van de tijd in de fysica. In het eerste deel wordt duidelijk dat voor Smolin het probleem overigens niet begonnen is bij Einsteins blokuniversum, maar al bij Galileo Galilei en Newton, die aantoonden dat wiskundige modellen universeel en eeuwig toepasbaar zijn. Bovendien is de newtoniaanse mechanica perfect deterministisch en kan uit de huidige toestand in principe elke toestand in het verleden of toekomst worden gereconstrueerd.

De wiskundige modellen die in de fysica gebruikt worden, mogen dan ‘tijdloos’ zijn, dat neemt volgens Smolin niet weg dat tijd wel degelijk een fundamenteel aspect is van onze realiteit. We dreigen volgens hem de kaart met het land te verwarren: eigenschappen van de theorie of het model zijn niet noodzakelijk ook die van de werkelijkheid. In het tweede deel formuleert Smolin echter zijn veel speculatievere voorstel: dat de natuurwetten zelf niet tijdloos zijn, maar kunnen evolueren. Hiertoe past hij de idee van natuurlijke selectie toe op universa, die zich zouden kunnen voortplanten indien ze via zwarte gaten nieuwe universa voortbrengen. Mij lijkt dit voorstel echter niet zo goed te passen bij het eerder gemelde probleem dat tijd in de fysica op de achtergrond is beland. Om te kunnen stellen dat universa zich in de tijd voortplanten is er namelijk een soort metatijd nodig. Het tijdsverloop binnen een universum, pakweg het onze, volstaat hier niet voor.

Smolin suggereert ook dat alomtegenwoordige quantumverstrengeling toch een universeel en waarnemersonafhankelijk ‘nu’ zou opleveren: dat is even speculatief, maar het biedt wel een gerichter antwoord. Smolins speculatieve metatijd, waarin universa geboren zouden worden, is in ieder geval niet wat we afmeten met de klokken in ons universum. Wat onze klokken wél meten, dat blijft moeilijk te verwoorden, juist omdat de tijd niet weg te denken is.

Bronnen

  • Jérôme Lodewyck, ‘An Even Better Atomic Clock’, in: IEEE Spectrum, 2014, 51 (10), 42-64.
  • Lee Smolin, Time Reborn: From the Crisis in Physics to the Future of the Universe. (Houghton Mifflin Harcourt, 2013).