Tag Archief: calculus

Video’s van lezingen in München

Tijdens mijn presentatie in München.In juni vertelde ik al over de Formal Epistemology Workshop (FEW) in München, waar toen heel wat mensen uit de formele kenleer samenkwamen om hun recentste onderzoek te bespreken en waar ik zelf twee tutorials gaf over hyperreële getallen en hun toepassingen.

Inmiddels staan alle video’s van de daar gehouden presentaties online: je kunt ze downloaden via het (gratis) iTunes-kanaal van het Münchense Centrum voor Wiskundige Filosofie (MCMP). Het overzichtelijkste is echter via het schema van het congres op de website van Branden Fitelson, waarbij er nu ook links zijn naar alle video’s.

Het is natuurlijk altijd zeer confronterend om jezelf op video terug te zien, maar ik heb beslist om de filmpjes hier toch te plaatsen – al was het maar om later aan mijn kind te kunnen zeggen: “Kijk, daar was jij bij en dat wist toen helemaal niemand!” :-)

Vooruitspoelen zal pas lukken als de video al zo ver geladen is; het is hier YouTube niet, hè. ;-) [Aanvulling 2016: Ik heb de video’s ein-de-lijk ook op mijn eigen YouTube-kanaal gezet.] Eerste deel:

Om de hele video te downloaden en achteraf te bekijken (in groter scherm), klik rechts op volgende link en kies opslaan: Download mp4 van deel 1.

Tweede deel:

Om de hele video te downloaden, klik rechts op volgende link en kies opslaan: Download mp4 van deel 2.

Het filmpje van Vi Hart, dat ik integraal liet spelen tijdens mijn eerste presentatie, kun je beter vanuit mijn vorige post herbekijken.

Infinitesimaal

In geel en groen twee benaderingen voor een integraal (oppervlakte onder de kromme). Bron: Wikimedia Commons, auteur: KSmrq.In mijn proefschrift maak ik gebruik van infinitesimale kansen. Wellicht ga ik in een volgend bericht hier iets meer over vertellen, maar vandaag zou ik graag even stilstaan bij het woordinfinitesimaal‘. Klinkt dat als Latijn? Dat treft, want dat is ook!

‘Infinitesimaal’ betekent ‘oneindig klein’. Lang woord, hè, voor ‘bijna niets’? Het woord werd bedacht door Leibniz. Als je één deelt door duizend dan krijg je een duizendste. De uitgang -ste geeft in het Nederlands dus aan dat je de stambreuk neemt (zelfde vorm als een rangtelwoord). In het Latijn gebruik je daarvoor de uitgang -esimus of (vanaf de Middeleeuwen) -esimalis. Bijvoorbeeld: duizend is ‘mille’ en duizendste is ‘millesimus’ of ‘millesimalis’. Leibniz plakte deze uitgang aan het Latijnse woord voor oneindig (infinitus) en verkreeg zo: ‘infinitesimalis’. In diverse talen werd dit woord overgenomen, met een lichtjes aangepaste uitgang. In het Nederlands werd het infinitesimaal. (Vergelijk met ons woord decimaal: dit komt van het Latijnse woord voor tiende, ‘decimus’ of ‘decimalis’.) Een ‘infinitesimaal’ is dus letterlijk een ‘oneindigste’.

(meer…)