Tag Archief: huis-tuin-en-keuken fysica

Donkere kamer

Als kind was ik bang in het donker. Het enige wat er nodig was geweest om mijn kinderangsten te verjagen was één lesje geometrische optica.

Deze column is eerder verschenen in het mei-nummer van Eos en op de Eos-website.

Omdat ik bang was in het donker, mocht de deur van mijn kinderkamer op een kier blijven. Meestal zorgde dat voor wat flauw, indirect licht. Maar als mijn vader of moeder het ganglicht aanknipte, zag ik op het plafond een heldere band. Ging mijn moeder nog wasgoed wegleggen, dan moest ze twee keer voorbij mijn deur. Eerst hoorde ik haar stappen van links naderen en in het terugkeren van rechts. Maar op het plafond zag ik haar schaduw eerst van rechts naar links voorbijkomen. Dat ben ik jarenlang zeer vreemd blijven vinden.

Onbewust interpreteerde ik de band licht als een spiegelbeeld van de deurkier. Telkens als iemand voorbijkwam terwijl ik nog wakker was, werd deze hypothese weerlegd. En omdat ik dat niet begreep vond ik het eng. Op de middelbare school leerde ik over de camera obscura als de essentie van elk fototoestel. Het licht wordt via een kleine opening vooraan omgekeerd op de achterwand geprojecteerd, waar zich een fotografische film of lichtgevoelige sensor bevindt. Aan mijn eigen donkere kamer dacht ik toen niet. Dat kwartje viel pas later.

Donkere Kamer.

De pagina van mijn column “Donkere Kamer” in Eos was toepasselijk vorm gegeven.

Het inzicht kwam toen ik in een schemerige hal naast een lift stond te wachten. Er was een glazen raam in de liftdeur en de kooi daalde af. De lichtstralen, afkomstig van een lamp bovenaan in de kooi, vormden eerst slechts een vlek op de vloer. Naarmate de lift zakte, konden ook minder steil naar beneden gerichte stralen via het raam ontsnappen en zo strekte de lichtvlek zich geleidelijk uit op de muur. De omkering tussen boven en onder deed me terugdenken aan die averechtse schaduwen op het plafond van mijn kamer.

Het enige wat er nodig was geweest om mijn kinderangsten te verjagen was één lesje geometrische optica: ‘Stel je voor dat het licht uit onvervormbare stralen bestaat.’ Geometrische optica is de oudste tak van de optica. Ze houdt geen rekening met golfachtige of deeltjesachtige eigenschappen van het licht. Volgens dit deelgebied kan je licht beschrijven als stralen die zich rechtlijnig voortplanten in de lucht of een ander uniform en transparant medium als water of glas. Het oppervlak van een transparant materiaal kan de lichtstralen deels reflecteren en deels doorlaten. Daarbij buigen ze af volgens de wet van Snellius. Een niet-transparant materiaal absorbeert de lichtstralen. Hoe en waarom dat gebeurt, valt al buiten deze tak van de optica.

De geometrische optica beschrijft ook wat er gebeurt als lichtstralen door een kleine opening gaan: de stralen gaan erdoorheen van boven naar onder en van links naar rechts. Het geprojecteerde beeld is dus een puntspiegeling. Dat principe kan je gebruiken als je een zonsverduistering zonder eclipsbril wil waarnemen. Prik een gaatje in een stuk karton, hou dat boven de grond en kijk dan naar de heldere vlek in de schaduw ervan. De projectie toont een puntspiegeling van de zon. Als de zon bijvoorbeeld onderaan rechts verduisterd is, dan zie je dit in de projectie bovenaan links.

Pinhole als veilige methode om een zonsverduistering te observeren.

Pinhole als veilige methode om een zonsverduistering te observeren. Foto bovenaan gemaakt in Retie tijdens de zonsverduistering van oktober 2005. Onderaan: detail.

Tijdens mijn onderzoek werkte ik met een confocale fluorescentiemicroscoop, die soortgelijke speldengaatjes of pinholes gebruikt om ongewenst strooilicht af te schermen en het gewenste signaal eruit te filteren. Buiten het lab gebruiken bijziende mensen dat principe spontaan als ze zonder bril in de verte moeten kijken. Ze knijpen hun ogen samen tot spleetjes en filteren zo de lichtstralen weg die hun ogen niet in focus krijgen. Als ik even mijn bril niet bij de hand heb en in de verte iets wil lezen, gebruik ik soms een kleine opening tussen mijn vingers als monocle. Het ziet er vreemd uit, maar het werkt wel.

Mijn kamerdeur op een kier werkte enkel in de smalle richting als een pinhole. Vandaar dus dat de schaduw van mijn moeder niet ondersteboven stond, maar wel vanuit de omgekeerde richting voorbijkwam. Als mijn zoon ooit vraagt om de deur op een kier te laten, zal ik hem eerst vertellen over die schaduwen. Niets obscuurs aan de hand, gewoon het principe van elke donkere kamer.

Waarom koelt vette soep minder snel af dan magere soep?

ikhebeenvraag.beVandaag plaats ik nog vier vragen die ik beantwoordde voor “Ik heb een vraag” (zie ook hier en hier).

De eerste vraag heb ik gekozen als titel voor dit stukje omdat het me toelaat het trefwoord “huis-, tuin- en keukenfysica” nog eens aan te vullen. :-)

~

Jana vroeg:

“Waarom koelt vette soep minder snel af dan magere soep als je erover blaast?”

Mijn antwoord (link)

Beste Jana,

Dit was me nog nooit opgevallen, maar ik kan het wel verklaren:

  1. Vet of olie heeft een lagere dichtheid dan water, dus het drijft op de soep (dit kan je zien als blinkende vlekjes op de soep).
  2. Vetten en oliën bestaan uit grote moleculen (met lange koolstofketens), die per molecule zwaarder zijn dan water, waardoor ze minder gemakkelijk verdampen dan water.

Het eerste punt lijkt het tweede punt misschien tegen te spreken, dus leg ik het even verder uit. Vetten zijn grotere moleculen en per molecule dus zwaarder dan water; dat was punt (2). Maar watermoleculen (H2O) zijn polair en de staarten van vetmoleculen niet. Daardoor zitten de watermoleculen in een waterdruppel heel dicht tegen elkaar, terwijl de vetmoleculen in vetdruppel meer tussenruimte hebben: de dichtheid van water is dus hoger dan van vet en dat was punt (1).

Deze twee effecten werken samen bij het antwoord op je vraag: het vet zelf verdampt minder gemakkelijk dan het water van de soep (2) en bovendien dekt het vet de rest van de soep af (1), waardoor er minder oppervlak overblijft waarlangs het water van de soep kan verdampen.

Hierdoor blijft vette soep langer warm dan magere, zelfs als je erover blaast.

Hetzelfde geldt ook voor room in koffie.

Vriendelijke groeten,
Sylvia

~

Nelson vroeg:

“Is er een vloeistof die kan drijven op een gas?”

Mijn antwoord (link)

Beste Nelson,

Nee, de afstand tussen gasmoleculen is doorgaans veel groter dan in een vloeistof. Het verschil in dichtheid tussen gassen en vloeistoffen is gemiddeld veel groter dan tussen vloeistoffen en vaste stoffen, waardoor er geen voorbeeld is waarbij de dichtheid omkeert (zoals bij ijs en vloeibaar water, waardoor ijs inderdaad op water kan drijven).

Er is wel een gas met een dichtheid die zes keer groter is dan lucht: zwavelhexafluoride.

Dit wordt soms gebruikt voor demonstraties: je kan op een bak vol (onzichtbaar) zwavelhexafluoride een bakje van aluminium laten drijven. Dit is zelfs een vaste stof, maar de vaste stof is maar een dun laagje gevuld met lucht. (Het werkt dus zoals een schip: je kan een schip maken van een materiaal dat zelf niet op water drijft.) Je zou in het bakje ook een klein beetje water kunnen doen en in zekere zin zou er dan “een vloeistof op een gas” drijven, maar als je het water rechtstreeks op het gas zou gieten zou het er wel doorzakken, dus het is een beetje valsspelen! ;-)

Kijk maar naar dit filmpje.

Vriendelijke groeten,
Sylvia

PS: Als je het gas zwavelhexafluoride inademt en dan praat, klinkt je stem veel zwaarder dan normaal. Het omgekeerde dus als bij helium: helium heeft juist een lagere helium dan lucht en daarbij klinkt je stem hoger dan normaal. Ook daarvan is er een filmpje.

~

Nelson vroeg ook:

“Is er een verband tussen kookpunt, smeltpunt en het atoomnummer of de atoommassa?”

Mijn antwoord (link).

Blokje tijd.

Bron afbeelding en meer info: zie deze pdf.

Beste Nelson,

Ja, er zijn trends binnen het periodiek systeem, maar op de meeste ervan zijn er ook uitzonderingen.

Als we naar de perioden kijken (horizontale rijen in het periodiek systeem), dan zien we over het algemeen dat smelt- en kookpunt eerst toenemen en dan afnemen met toenemend atoomnummer (van links naar rechts). De edelgassen, op het uiteinde van een periode, hebben het laagste smelt- en kookpunt. Naar het midden toe zijn de smelt- en kookpunten hoger en bovendien stijgt het kookpunt er sterker dan het smeltpunt.

Dit valt als volgt te begrijpen: smelt- en kookpunt hebben te maken met de bindingssterkte tussen atomen. (Bijvoorbeeld voor smelten: de temperatuur hangt samen met de hoeveelheid energie die er nodig is om de binding tussen atomen in de vaste stof te verbreken en zo het materiaal vloeibaar te maken.) Binnen een periode hangt die bindingssterkte af van de elekronische structuur. Edelgassen hebben geen vrije elektronen en zijn dus zwak gebonden. Daardoor smelten en koken ze ook bij een lagere temperatuur dan de andere elementen in hun periode, waardoor we ze bij kamertemperatuur als gassen kennen.

Als we naar de groepen kijken (verticale kolommen in het periodiek systeem), dan zien we meestal dat smelt- en kookpunt toenemen met toenemend atoomnummer (van boven naar onder). Dat komt doordat het totale aantal elektronen en daarmee de vanderwaalskracht tussen atomen toeneemt met de atoommassa, waardoor de binding sterker is en er meer energie (hogere temperatuur) nodig is om die te verbreken.

Op de grafiek zie je het atoomnummer op de horizontale as. Het smeltpunt is de fuchsia lijn en het kookpunt de donkerblauwe lijn. (Kamertemperatuur is aangegeven met de gele lijn.)

Je kan smelt- en kookpunten (en nog veel meer eigenschappen) van de elementen opzoeken op deze Engelstalige website.

De positie in het periodiek systeem zegt niet alles over smelt- en kookpunt. Denk bijvoorbeeld aan koolstof (atoomnummer 6). Dat kan in vaste vorm voorkomen als grafiet en als diamant (en er zijn nog andere vormen). (Dit wordt allotropie genoemd.) Grafiet en diamant hebben duidelijk verschillende eigenschappen: grafiet is zwart en zacht, terwijl diamant kleurloos en zeer hard is. Het zal je dan ook niet verbazen dat ook het smelt- en kookpunt verschillen, terwijl het toch hetzelfde atoomnummer is. De bindingen in diamant zijn sterker dan in grafiet en de smelttemperatuur is dan ook hoger. Daarom moet er bij tabellen voor sommige elementen onder staan over welke vorm het precies gaat; voor koolstof is dat meestal diamant.

Vriendelijke groeten,
Sylvia

~

Guy vroeg:

“Duwt middelpuntvliedende kracht een zwaarder voorwerp meer naar de zijkant van een draaiende bol dan een lichter voorwerp? Of juist minder?

In een snel ronddraaiende bol zitten lichte en zware voorwerpen door elkaar. Welke zullen tegen de buitenrand geduwd worden, de lichtere of de zwaardere?

Mijn antwoord (link):

Beste Guy,

De middelpuntvliedende (of centrifugale) kracht is een schijnkracht, die je kan begrijpen in termen van traagheid (de eerste wat van Newton). Hierbij helpt het om het standpunt in te nemen van een waarnemer die niet meedraait. Als je in de auto een felle bocht neemt, dan heb je het gevoel dat je naar buiten wordt geduwd (“tegen de bocht in”), maar het is een effect van traagheid: je lichaam gaat nog een beetje rechtdoor (vorige bewegingstoestand), terwijl de auto al afdraait. De effecten van traagheid zijn het duidelijkst bij de grootste massa (-dichtheid).

Het antwoord op je vraag kan je zelf zien door met een heliumballon in de auto een bocht te nemen: terwijl jij naar buiten helt, zal de heliumballon naar binnen bewegen. Dat komt doordat de heliumballon een lagere dichtheid heeft dan de lucht in de auto, terwijl de passagiers juist een hogere dichtheid hebben dan lucht. Bekijk bijvoorbeeld dit filmpje.

De zwaardere voorwerpen zullen dus naar buiten geduwd worden in een sneldraaiende bol: dat is precies hoe een centrifuge werkt waarmee in het labo vloeistoffen worden gescheiden in laagjes per dichtheid. (De zwaardere stoffen bewegen namelijk meer naar buiten, dit is meer naar onder in de proefbuisjes.)

Vriendelijke groeten,
Sylvia

Astropoetica

Another perspective on “Children of the Cosmos“: the poem “Orbit” by Jen D. Clark, from Astropoetica (2010).

I think about joining the Seven Sisters
when I make
peanut butter and jelly
again.

Tying shoes I wonder
how this
planet doesn’t stop spinning.

Dust bunnies are molecular chambers and
laundry is a colorful list of historical moments.

Standing around with other Moms
At preschool
they seem content,
to stare at each other as they
discuss what was on television or
survival of children’s phases
or avoiding cellulite and crow’s feet.

I never saw any of them look up
so I hardly ever
spoke up.

The children rotate around these stars,
manicured and yoga calm.
I once said something about
having only one child, suddenly
this black hole developed
and the conversation formed
a vacuum.

As if I was to be avoided or
studied from afar.
Maybe that’s all I can give—
one supernova explosion
noted and charted in a
hospital on the outer nexus,
giving birth to a son.
Soon after I was noted
to collapse in on myself,
and the study of me
stopped with a note
of “high risk.”

The question is, was I capable
all along to give new bodies
to the cosmos,
but I waited too long?
I will test my theories and
write grant letters until
I die.

 

Interferentiekleuren pastaketel: ook in Brazilië

[Diverse updates onderaan dit bericht; laatste van zondag 27 september.]

Herinnert u zich deze nog, nog, nog? In 2011 schreef ik een blogpost over de interferentiekleuren die op de bodem van de ketel verschijnen na het koken van spaghetti. Deze kleuren wijzen erop dat er zich een dunne film op de bodem van de ketel bevindt. Wat voor laagje dat dan zou zijn, daar was ik toen nog niet helemaal uit, maar ik had wel enkele hypotheses:

  • een component van de pasta zelf, zetmeel bijvoorbeeld
  • olie, net zoals wanneer je olie op straat ziet
  • zout, dat voor natriumoxide zorgt (bron)
  • een oxide van de ketel zelf (bron)

Toen ik mijn eerste FameLab-presentatie voorbereidde, was ik aanvankelijk van plan om zo’n ketel als attribuut te gebruiken. Een visueel vertrekpunt om interferentiekleuren uit te leggen. Maar uiteindelijk was ik bang dat niet iedereen hier al ooit op gelet had en dat het door de afstand en de spots ook niet duidelijk genoeg te zien zou zijn tot in de zaal. Dus hield ik het bij zeepbellen.

Maar ondertussen had ik wél opnieuw gezocht naar de precieze verklaring van de laag en raakte ik ervan overtuigd dat het om een laagje oxide van de ketelbodem gaat.

Interferentiefilm.

Interferentiefilm op de bodem van een ketel na het koken van dunne pasta of mie.

Hopelijk kennen jullie al de geweldige website van Les Cowley: Atmospheric Optics (AtOptics), waar vorig jaar mijn foto van een babyoog mocht staan als foto van de dag. Vandaag stond er op die voorpagina een foto van interferentiekleuren in een waterkoker, getiteld Pasta film en gemaakt door een fysicus uit Brazilië, Mário Freitas.

Bij de beschrijving wordt gesuggereerd dat de dunne film op één of andere manier door zetmeel wordt veroorzaakt, omdat het verschijnsel niet optreedt bij het koken van groenten en bij pasta wel. Aangezien ik hier inmiddels anders over denk, stuurde ik mailtje naar  Les en Mário. (En Les heeft al positief gereageerd dat hij er zelf ook nog eens verder naar gaat kijken zodra hij tijd heeft.)

Dit is een vertaling van de observaties en bronnen die ik in die e-mail heb vermeld:

  • Ik heb dit verschijnsel -weliswaar zelden- ook gezien na het koken van sommige groenten (één keer bij broccoli schorseneren), maar NOOIT bij aardappelen, wat niet compatibel lijkt met de zetmeel-hypothese.
  • Het gebeurt vaak met bepaalde ketels en nooit met andere, dus het hangt op zijn minst deels af van het materiaal van de ketel, wat compatibel is met de oxide-hypothese.
  • De belangrijkste opmerking: vergelijk de kleuren eens met temperkleuren van staal (Engelse wiki en Nederlands); van staal is bekend dat het een dun oppervlakte-oxide vormt. Bekijk ook deze demonstratie voor de relevante kleuren (geen spectraalzuivere kleuren zoals in een regenboog).
  • Het patroon blijft intact als je de ketel met zeepsop afwast, maar kan verwijderd worden met een druppel koude azijn (hetgeen azijnzuur bevat). Misschien ook gerelateerd zijn deze schoonmaaktips.
  • Tot slot vond ik nog een bron uit 1840, waarbij het gaat over een koperen theeketel en opnieuw kleuren door een oxide, dat ontstaan door tempering door de hitte.

Kortom, op dit moment denk ik dat de kleuren te wijten zijn aan een dunne laag oxide, te vergelijken met (of mogelijk identiek aan) temperkleuren. Ik denk dat de kleurvariaties te maken hebben met het verschil in temperatuur in water in vergelijking met in pasta, wat zou kunnen leiden tot verschillen in de dikte van de oxidelaag.

Mij is het wel nog steeds niet helemaal duidelijk wanneer precies de patronen ontstaan: al tijdens het koken, of pas bij het afgieten – wanneer de nog hete (maar niet overal exact even hete) ketelbodem plots in contact komt met de koudere lucht? Ik vermoed het laatste en dit heb ik ook al proberen testen, maar tot op heden tevergeefs (mede omdat het kleurpatroon sowieso niet zichtbaar is als je er water over giet).

Bedenkingen en observaties uit uw eigen keuken meer dan welkom!

Belangrijke aanvulling:

Toen ik mijn eerste e-mail stuurde meende ik me te herinneren dat ik het effect een keer had gezien bij broccoli, maar nu ben ik daar niet meer zeker van. De enige relevante foto die ik heb teruggevonden is namelijk van een ketel waar schorseneren in gekookt waren. Schorseneren bevatten geen zetmeel, maar wel een ander polysacharide, namelijk inuline. Hiermee wint de zetmeel-hypothese (in het geval van pasta dan) dus toch weer aan geloofwaardigheid.

Interferentiefilm.

Interferentiefilm op de bodem van een ketel na het koken van schorseneren. Deze bevatten geen zetmeel, maar wel inuline.

Tweede aanvulling (21u):

Nog een aanwijzing die toch in de richting van zetmeel wijst: deze website over microscopie van Olympus.

“Because carbohydrates in potato starch grains display an ordered lamellar molecular structure, portions of the grains (and in some cases, the entire grain itself) are birefringent and absorb the polarized wavefronts that leave the condenser Nomarski prism and pass through the specimen. As a result, the potato starch grains observed in DIC microscopy exhibit interference colors and the characteristic Maltese cross patterns (originating from the crossed polarizers), which are typical of birefringent anisotropic specimens having spherical symmetry (Figure 6(b)).”

Maar waarom we het dan uitgerekend bij aardappelen nooit zien, dat is me vooralsnog een raadsel.

Aanvulling 27 september:

In een Twitter-bericht laat fysicus Philippe Smet weten dat er wél dit soort kleuren te zien zijn na het koken van aardappels.

Bij nader inzien koken wij bijna altijd bloemige aardappels, waardoor de laag onderaan de ketel waarschijnlijk gewoon te dik wordt om dit effect nog te zien.

Op dit moment ligt de zetmeel-hypothese dan toch aan de leiding! (Het is natuurlijk ook mogelijk dat zowel oxidatie als zetmeelafzetting kunnen optreden en tot mooie kleuren leiden.)

Help, ik zie overal fysica! (FameLab)

Mijn presentatie voor de FameLab heat in Gent ging over licht en kleuren. Omdat ik geen video heb van die avond, heb ik besloten om de vorige presentatie zelf eens op te nemen. Zonder trillende handen deze keer. ;-)

Het resultaat zie je hieronder: een filmpje met drie minuten over optica (in het Engels).

Dit zijn de tien finalisten die aantreden bij de nationale finale in Leuven. Daar zal ik trouwens een volledig nieuwe presentatie geven. :-)

Wil je erbij zijn op dinsdag 12 mei (18u STUK)? Dat kan! Het is gratis, maar je moet je wel aanmelden op de website. (De hele voorstelling is het Engels.)

FameLab – verslag deel 2

In het vorige bericht schreef ik al over de preselectie van FameLab, die achter gesloten deuren plaatsvond. ’s Avonds was het tijd om het publieke podium te betreden.

De show

De avondshow in Gent werd gepresenteerd door Lieven Scheire. De vijftien deelnemers zaten in alfabetische volgorde op de eerste rij in de zaal. Dat kan je zien aan het standpunt van waaruit de foto hieronder gemaakt is: ik was voorlaatste aan de beurt en zat dus rechts vooraan, vlak aan de deur.

We hadden elkaars audities niet gezien, dus het was ook voor de deelnemers een verrassing waar het over zou gaan en hoe de onderwerpen aangebracht zouden worden. Het was heel inspirerend om zo veel jonge onderzoekers op een creatieve en enthousiaste manier over hun onderzoeksdomein te zien praten. Er waren leuke weetjes en diepe inzichten. Er mocht al eens gelachen worden, maar er waren ook kippenvelmomenten.

FameLab 2015 heat Gent.

FameLab 2015 heat Gent.

Tijdens mijn eigen presentatie stond ik opnieuw – en opnieuw tot mijn verbazing – zichtbaar te trillen bij het bellen blazen. Kinderspel, behalve als je nerveus bent blijkbaar. ;-) De rest van de presentatie verliep zoals ik had gepland. Hieronder zie je een foto vanuit het perspectief van de jury, die mee op het podium zat.

FameLab 2015 heat Gent.

FameLab 2015 heat Gent. (Bron foto.)

De uitslag

Tijdens de receptie werden er acht namen bekend gemaakt van mensen die mogen meedoen aan de nationale finale en ik was erbij. Hieronder zie je een foto van deelnemers en juryleden.

FameLab 2015 heat Gent.

Deelnemers en jury van FameLab 2015 heat Gent. (Bron foto.)

Tijdens de receptie was het ook mogelijk om een foto van jezelf te maken met een IR-camera (een opstelling van LumiLab, de onderzoeksgroep van jurylid Philippe Smet aan de UGent): een IR-selfie dus. Je kreeg er een URL bij waar je de foto kon downloaden.

IR-selfie.

IR-selfie. (Bron foto.)

De winnaar mochten meedoen aan een MasterClass. Daarover morgen een verslagje.

Pluisjes (oplossing fotoraadsel)

Vandaag plaats ik de oplossing van het meest recente fotoraadsel. Maar eerst herhaal ik de dubbele opgave.

Deel 1

Dit zijn geen balletschoentjes. Wat is het wel?

Rara, wat is het wel?

Dit zijn geen balletschoentjes. Rara, wat is het dan wel?

Deel 2

En dit zijn geen tientallen oogjes. Wat is het wel?

Rara, wat is het wel?

Dit zijn geen tientallen oogjes. Rara, wat is het dan wel?

Er kwamen acht gokken binnen: drie via SciLogs en vijf via mijn eigen blog.

  • Voor de eerste foto werd er gegokt op iets plantaardigs (Lilith), zaadjes of zaaddoosje van een paardenbloem (Tim en G. Nauwelaerts) en meeldraden (Gerda van Etten).
  • Voor de tweede foto werd er gegokt op een aardbei (Tim), een zaadje met dauw erop (G. Nauwelaerts), een ouderwetse knoop (Liese) en een stampertje (Gerda van Etten).

(Het antwoord lees je na de vouw!)
(meer…)

Over diamantvormige druppels

Dit bericht gaat over een foto van een diamantvormige waterdruppel. Ludo Rutten, die blogt op Muggenbeet, observeerde de druppel in het hart van het blad van een lupine. Hij stelt er zich volgende vragen bij:

“Hoe komt het dat die druppel niet wegvloeit? In het blad zijn nochtans spleten genoeg om langs weg te sijpelen. Zouden die haartjes het water afstoten? Ook gek is dat die druppel de kromming van het blad niet volgt maar gebogen staat. Heeft dit te maken met de cohesieve kracht? En ik vraag me af: is dat allemaal opgevangen water of is hier ook sprake van guttatie zoals je dat vaak ziet bij vrouwenmantel?”

In de commentaren lees ik dingen over oppervlaktespanning en cohesie, maar ook over centripetale krachten (en dat die krommingen in de richting van het middelpunt zouden veroorzaken). Over de rol van die haartjes lees ik er echter niks. (Evenmin over de vraag of lupines ook aan guttatie doen, maar daar ga ik mij ook niet aan wagen.) Een leuke uitdaging!

Foto van waterdruppel op lupine door Muggenbeet.

Deze foto was de inspiratie voor dit blogbericht. Met toestemming overgenomen van Muggenbeet (link).

“Zouden die haartjes het water afstoten?” Mij lijkt het dat de foto juist suggereert dat zij het water aantrekken! Maar laten we bij het begin beginnen.

Op de foto zie je het resultaat van een samenspel van interacties tussen drie materialen: het water, de plant en de lucht (die zelf natuurlijk niet zichtbaar is). Wat betreft de plant is niet alleen de samenstelling belangrijk (met name de waterafstotende, wasachtige laag op de bladeren – terecht opgemerkt door Fruitberg), maar ook de vorm ervan (die haartjes of trichoom dus). De volledige uitleg werd hierdoor wat te lang voor een reactie. (Vandaar dit bericht.)

Waterdruppel op het blad van een lupine.Wanneer je verschillende stoffen met elkaar in contact brengt, ontstaat er een contactspanning (een netto-effect van de elektrische aantrekking tussen de moleculen in die stoffen, veroorzaakt door interacties van permanente en/of tijdelijke dipolen). Afhankelijk van de combinatie van stoffen kan de contactspanning laag of hoog zijn. Als het om twee vloeistoffen gaat zorgt een lage contactspanning ervoor dat de stoffen gemakkelijk mengen (bv. water en inkt), terwijl een hoge contactspanning ervoor zorgt dat ze spontaan ontmengen (bv. water en olie).

De contactspanning tussen water en lucht is hoog. Anders gezegd: het kost minder energie om watermoleculen met elkaar in contact te houden dan met de lucht. Hierdoor ontstaat het effect van oppervlaktespanning, die het contactoppervlak tussen lucht en water tracht te minimaliseren. Resultaat: kleine hoeveelheden water vormen in een omgeving van lucht ongeveer bolvormige druppels (minimaal contactoppervlak met lucht). Over oppervlaktespanning had ik het trouwens al eerder op dit blog: in verband met koffie en in verband met afwassop.

Het water op de foto wordt aan de bovenkant omgeven door lucht, maar rust tegelijk op een blad met een wasachtige laag. De oppervlaktespanning tussen olie en water is ook hoog. Ook hier geldt dus dat het water een zo klein mogelijk contactoppervlak zal proberen vormen. Als de hoeveelheid water groter wordt, krijg je eerder een plasje water dan een bolvormige druppel. Dit komt door de zwaartekracht: op een gegeven moment is het gewicht van het water groter dan de krachten van de oppervlaktespanning.

Waterdruppel op het blad van een lupine.Tot nu deed ik alsof het blad glad was, maar ook de structuur van het oppervlak speelt een belangrijke rol bij de benatting. Bij een ruw oppervlak (met een wasachtige, waterafstotende laag) zal de druppel niet mooi de vorm volgen (want dat zou een groot contactoppervlak vereisen, met een hoge oppervlaktespanning als gevolg), maar eerder op de uitstekende toppen rusten. Dit lijkt ook te gebeuren door de haartjes op de bladen van deze lupines: het water sluit bijna nergens aan met het blad (er zit een luchtlaagje tussen), maar wel met de haartjes (uitstekende delen).

Hoewel haartjes bij planten dus helpen om water op enige afstand te houden van het blad, kunnen ze tegelijk de wateropname uit de lucht bevorderen. Doordat de haartjes uitsteken, vergroot dit het volume waaruit ze water kunnen oppikken. En als er eenmaal een druppeltje gevormd is, heeft dat slechts een heel klein contactpunt nodig (weinig contactspanning) om toch aan zo’n haartje te blijven hangen. Vaak hebben die haartjes trouwens een schubachtige structuur (niet noodzakelijk zichtbaar met het blote oog), wat zorgt voor extra ruwheid; dit vergroot het contactoppervlak nog verder.

Waterdruppel op het blad van een lupine.Eens de druppel gevormd is, rolt hij door de aanwezigheid van de haartjes minder snel weg. Dit kan uitgelegd worden aan de hand van een energiebarrière. Als je zelf een druppel water in het midden van zo’n blad legt (bij de nerf, althans als daar geen haartjes staan), zal die mooi naar beneden rollen. Als het water echter – zoals dat op de foto – nog geen contact heeft met het bladoppervlak, zal het daar ook niet spontaan naartoe beginnen bewegen, omdat het dan eerst zijn opppervlaktespanning (ten minste tijdelijk) moet verhogen. (Dit effect zou je “pinning” van de contactlijn kunnen noemen.) Door met het blad te schudden, voeg je zelf wat energie toe. Hierdoor kan de energiebarrière eventueel overwonnen worden, waardoor minstens een deel van het water alsnog van het blad zal afstromen.

In elk geval een boeiend onderwerp! Zelfs de schrijvers van handboeken zoals “Functional Surfaces in Biology” weten nog niet alle details.

Aanvulling (6 maart 2014, 20u):

Foto toegevoegd (met toestemming). Op het web staan er trouwens nog veel mooie foto’s van waterdruppels op lupines (kijk maar hier, hier, of hier).

Schuimmaan (oplossing fotoraadsel)

De vraag bij dit fotoraadsel was: waarvan is deze fantasiemaan gemaakt?

Rara, waarvan is deze fantasiemaan gemaakt?

Rara, waarvan is deze fantasiemaan gemaakt?

Jullie reacties

Er bereikten mij twaalf reacties via vier verschillende kanalen (Material Girl op SciLogs, mijn eigen blog, de Twitter-account @eos_magazine en de Facebook-pagina van Eos). Uit jullie gokken kan ik twee dingen opmaken: dat jullie opmerkzame mensen zijn en dat velen onder jullie dorstige types zijn. ;-)

Op SciLogs opende Geert Van Gestel met de gok “schuim”. Ik kan al verklappen dat dit juist was, maar andere SciLog-lezers zochten verder naar een preciezer antwoord. Francky dacht ook aan schuim, waarschijnlijk van boter in de pan, Willem Hulscher aan een pannenkoek en Walter Valgaeren aan een sinaasappel. (Of hij op schuimend sinaasappelsap doelde, dan wel op de schil van de vrucht, weet ik echter niet.) Deze drie gokken zaten ernaast, maar ik heb intussen wel honger gekregen!

Ook aan onze dorst werd gedacht. Evy Sohier, zelf geen koffiedrinker, gokte op het schuim op een koffie. PJ Swinkels durfde (op mijn eigen blog) de koffie-hypothese wel verder te verfijnen: “waarschijnlijk Italiaans, maar geen cappuccino, die is witter van kraag“.

Alicia Meersschaert gokte (via Facebook) op de kraag van een Guinness. Op SciLogs hield Hans het op een “close-up van schuimkraag van een biertje vanbovenaf gezien”.

Een zekere “Mr. X” gokte (via Twitter) op zeepsop van afwaswater. Op SciLogs kreeg hij navolging van Sven (“Volgens mij gewoon afwaswater.”) en van Sam Bennekens (“zeepsop!”). Maciej hinkte op twee gedachten: “Voor mij lijkt dit op schuim op afwaswater. Kan natuurlijk op slecht bier zijn, da lijkt daar wel op ;)”

(Voor het juiste antwoord moet je snel verderlezen na de vouw!)

(meer…)

Oplossing fotoraadsel en een keukenproefje

Twee weken geleden vroeg ik jullie om mee te raden naar wat er op deze foto staat:

Rara, wat is dit?

Is het de nieuwe diamantplaneet? Of een abstract kunstwerk? Of nog iets helemaal anders???

Er kwamen 13 reacties: 2 op dit blog, 4 via Weetlogs en 7 via Facebook. Vandaag is het tijd voor de ontknoping…

Proficiat aan Steven Vanhullebusch, die met het juiste antwoord kwam: het is inderdaad de bodem van een ketel waarin spaghetti werd gekookt. Als bewijs toon ik hieronder een foto die op dezelfde dag is gemaakt:

Geen planeet, maar de bodem van een ketel.

Welkom op de spaghettiplaneet.

De foto was niet bewerkt, behalve dat ik de context van het beeld had verstopt onder een zwarte rand. Hierdoor werd het zeer moeilijk om de schaal van het voorwerp in te schatten; het kon immers gaan om een opname door een microscoop (suggestie van Thommy S) of door een telescoop (al wisten Youri Vassiliev en Frank Witsel de mogelijkheid van een planeet goed te weerleggen). Het voorwerp kon hol (binnenkant van een schelp) of bol (zeepbel, parel, knikker, …) lijken, maar was dus gewoon plat.

De mooie kleuren die achterblijven in de ketel na het koken van spaghetti fascineren me telkens weer, maar ik vreesde dat ik de enige mens op aarde was die daar foto’s van maakt… Ik kon mijn geluk dan ook niet op toen ik het werk van de Noorse fotograaf Christopher Jonassen ontdekte. Voor zijn boek “Devour” (hetgeen ‘verslinden’ betekent) maakte deze kunstenaar foto’s van verweerde en bekraste bodems van pannen, die hij vervolgens als hemellichamen presenteert. Zo kwam ik dus op het idee voor dit fotoraadsel.

Hoewel het voorwerp op de foto geen zeepbel is – al dan niet gevuld met rook – (gok van Reinout en Pat Mons), geen parel (gok van Danny) of binnenkant van een schelp (gok van Thommy S), geen knoop (gok van Ginette De Veerman) en evenmin een knikker (tweede gok van Pat Mons), krijgen deze pogingen toch een eervolle vermelding. Al deze voorwerpen hebben namelijk iets gemeen met de bodem van een spaghettiketel: hun parelmoerkleuren. De kleuren zijn in al deze gevallen te danken aan hetzelfde fysische fenomeen: interferentie van licht in dunne lagen.

Om te begrijpen hoe de kleurpatronen in een ketel ontstaan, kunnen we best even opfrissen hoe een regenboog ook alweer ontstaat. Zowel zonlicht als het licht van een lamp bestaan uit verschillende kleuren en elk van deze kleuren licht heeft een eigen golflengte. Zo heeft rood licht een langere golflengte dan blauw licht. Wanneer een lichtstraal schuin invalt op het contactoppervlak tussen twee materialen met een verschillende dichtheid (bijvoorbeeld tussen lucht en glas), gaat de straal niet rechtdoor, maar buigt ze af (‘lichtbreking‘ of ‘refractie’). De brekingshoek is niet alleen afhankelijk van de dichtheden, maar ook van de kleur van het licht (‘dispersie‘). Wanneer wit licht op een prisma invalt, zullen de langere golflengten (bv. rood licht) minder gebroken worden dan de kortere golflengten (bv. blauw licht). Zo kun je het spectrum van het licht zichtbaar maken: de kleuren die in de oorspronkelijke witte straal zitten, worden daarbij uit elkaar gehaald. Als de zon schijnt op regendruppels, werkt elke druppel als een klein prisma en zo ontstaat er een regenboog.

Als wit licht invalt op een prisma, wordt de blauwe kant van het spectrum sterker gebroken dan de rode kant.

Als wit licht invalt op een prisma, wordt de blauwe kant van het spectrum sterker gebroken dan de rode kant. (Bron van de animatie: http://commons.wikimedia.org/wiki/File:Light_dispersion_conceptual_waves.gif.)

Wanneer een lichtstraal op een transparant materiaal invalt, splits deze zich in twee: een deel zal van de straal op het oppervlak weerkaatsen (‘reflectie‘) en het andere deel zal in het materiaal doordringen en gebroken worden (‘refractie’). Stel je nu een dunne laag van een transparant materiaal voor, olie bijvoorbeeld. Stel dat er licht op invalt van één welbepaalde golflengte (‘monochromatisch licht‘). Dan vertrekken er van het oppervlak van de olie twee lichtstralen: één lichtstraal die van de bovenkant van de olielaag weerkaatst en één lichtstraal die van de onderkant van het laagje olie weerkaatst (zie dit plaatje). Deze tweede lichtstraal heeft een langere weg afgelegd (twee keer door de dikte van de olie). Licht kan voorgesteld worden als een golf en wanneer twee golven samenkomen (‘superpositie‘), kunnen deze elkaar uitdoven of versterken (‘interferentie‘). Als de golflengte van het gebruikte licht een geheel aantal keer past in de extra weglengte van de tweede lichtstraal (die samenhangt met de dikte van de laag), zullen beide golven in fase zijn en zal er versterking optreden; als de extra weglengte op een geheel aantal plus een halve golflengte uitkomt, zullen de golven in tegenfase zijn en elkaar uitdoven. (Dit is althans het eenvoudigste geval; als er fase-omkering gebeurt, is het precies andersom.) Alle andere gevallen geven iets ertussenin: geen volledige versterking, maar ook geen volledige uitdoving.

Wanneer er nu wit licht invalt op de dunne, transparante laag, dan geldt bovenstaande redenering voor elke golflengte afzonderlijk: bij een bepaalde laagdikte worden sommige kleuren versterkt, terwijl andere worden uitgedoofd. Kijk maar eens naar hoe het licht weerkaatst op een CD- of DVD-schijfje: de transparante beschermlaag op de CD is overal precies even dik en zorgt voor zeer heldere ‘regenboogkleuren’. (Tussen aanhalingstekens, want het zijn niet zoals bij een regenboog spectraal zuivere kleuren!) Als de laagdikte van plaats tot plaats varieert, ontstaan de typische gewolkte patronen van parelmoerkleuren van olie op water, zeepbellen, parels én de bodem van een spaghettiketel (‘iriseren‘).

Als je een beetje rondkijkt in de keuken, kun je overal mooie kleuren zien. Je kunt zo’n kleurrijke vlek trouwens fixeren op papier: laat een druppel transparante nagellak vallen op een kom water en schep de vlek op met donker karton (meer uitleg op deze Engelstalige website). Interferentie is niet alleen mooi, het is ook nuttig: met de interferometer van Michelson (ooit bedacht om het bestaan van ether te bewijzen) kun je de lichtsnelheid bepalen. Ook de antireflectielaag van brilglazen, die groene of paarse reflecties kan veroorzaken, werkt op het principe van interferentie. Meer lezen? Deze website legt interferentie in dunne films eenvoudig uit (in het Engels).

Jullie kunnen me helpen met een eenvoudig experiment in de keuken.Met de uitleg over interferentie in dunne films is één cruciale vraag onbeantwoord gebleven: waaruit bestaat de dunne laag in kwestie dan? Wat blijft er achter op de bodem na het koken van spaghetti? Is het zout, olie, of zetmeel? Om eerlijk te zijn, weet ik het niet zeker! Volgens Steven Beeson en James Mayer is het laagje afkomstig van het toegevoegde zout en bestaat het uit natriumoxide (op pagina 96 van het boek “Patterns of light“). Ook deze bron houdt het bij een oxide, maar dan van de ketelbodem zelf.

Ik kan me – met de beste wil van de wereld – niet meer herinneren of er zout danwel olijfolie aan te pas is gekomen, die keer dat ik die foto heb gemaakt. Gebrekkige administratie is natuurlijk geen goede manier om een wetenschappelijk experiment te doen. Daarom een oproep aan jullie, beste lezers. De volgende keer dat je pasta kookt, wil je dan een reactie posten als er mooie kleurtjes op de bodem te voorschijn komen? Zo ja, zet er dan bij:

  • of je zout of olie/boter hebt toegevoegd,
  • welk soort pasta het was,
  • van welk materiaal de ketel is gemaakt (als je dit weet).

Dan kunnen we er misschien samen achterkomen waaruit het dunne laagje bestaat dat voor de parelmoerkleuren zorgt in onze spaghettiketels. (Crowdsourcing schijnt hip te zijn, ook in het onderzoek.) Foto’s posten van mooie resultaten mag natuurlijk ook altijd. :)

Wetenschap is leuk om over te lezen, maar nog leuker om te doen – zeker als je het resultaat gewoon kunt opeten. Hartelijk dank alvast voor de reacties en laat het smaken, hè!