Bitterzoete wetenschap
Deze blogpost stuitert alle kanten uit: van holistische koffie over kat-dekbed-excitaties naar traag licht. Katten en fysica zorgen op internet altijd voor grappige combinaties, dus doe ik vandaag ook een poging. Het bezorgt me alvast een goed excuus om er schattige plaatjes bij te plakken. :-)
Herinner je je nog mijn fascinatie voor zwevende koffiedruppels? Ik heb zopas nog een leuke waarneming gedaan van dit effect. Meestal drink ik niets met bruis, maar laatst had ik zo’n dorst dat ik van een glas nog hevig bruisende cola dronk. Ik keek in het glas – waarschijnlijk scheel, ja! – en zag hoe de bruis voor minuscule, drijvende druppeltjes zorgde die alle kanten uit stuiterden. Heerlijk om te zien.
Herinner je je ook nog de verklaring voor dit effect? Op het eerste zicht lijken de druppeltjes te zweven of te drijven, maar om te begrijpen hoe ze bewegen, moet je er rekening mee houden dat ze niet in het ijle hangen: ze zijn volledig omgeven door lucht. Bovendien staat het vloeistofoppervlak waar ze op lijken te drijven niet stil. Het oppervlak kan aan het trillen gebracht zijn door eerdere druppels die erop vielen, door met het glas of kopje te bewegen, of door tegen de rand van de fles te tikken. Het bewegende oppervlak sleept de omringende lucht mee en zorgt zo voor een luchtkussen waar de druppels op blijven dansen. In geval van hete koffie in de koffiezet helpt ook het temperatuurverschil een handje om de lucht in beweging te krijgen (door thermische Marangoni-convectie).
Deze verklaring is ‘holistisch’: om te begrijpen hoe de druppels op het oppervlak bewegen, moet je niet enkel naar de eigenschappen van die druppels zelf kijken, maar ook naar alles eromheen. In dit geval naar de beweging van het onderliggende vloeistofoppervlak, die de lucht doet bewegen, die op haar beurt weer met de druppels interageert. Indirect, namelijk via de lucht als mediator, interageren de golven van het vloeistofoppervlak met de vloeistofdruppel. Dit heeft veel weg van een golf-deeltje-interactie (al is een koffiedruppel geen star deeltje).
Om beter te begrijpen wat ik met een golf-deeltje-interactie bedoel, kun je fysica gaan studeren… of een kat in huis nemen. Als een kat onder een deken kruipt, zie je van buitenaf een hobbel in de deken. Om dit bultje te verklaren, helpt het weinig om de biologie van de kat te bestuderen, of de cultuurgeschiedenis van ons beddengoed. In de ogen van een fysicus verandert de bult in een kat-dekbed-excitatie: een specifieke verandering in de vorm van de deken met als onderliggende ;-) oorzaak de vorm van de kat. Als de kat onder de deken door kruipt, beweegt de bult, met een zekere snelheid. Of, opnieuw in de ogen van de fysicus, een golf-deeltje-interactie.
Om het helemaal wetenschappelijk te maken, zou je de snelheid van de bult (een kat onder een deken) kunnen vergelijken met een “vrije kat” (een kat die vrij rondloopt, dus niet onder een deken). Ik heb dit experiment niet uitgevoerd, maar op theoretische gronden verwacht ik dat de vrije kat sneller beweegt dan de bult. Maar zelfs een loslopende kat haalt de lichtsnelheid niet – zelfs niet als je ze eerst goed gek maakt met een laserpointer. ;-)
Als je een kat – of eender welk dier, voorwerp, of deeltje met massa – meer snelheid wil geven, moet je er energie aan geven. Je zou kunnen verwachten dat als je maar energie blijft toevoegen, dat je de kat met eender welke snelheid kunt laten bewegen. In de praktijk blijkt dit niet te kloppen. De curve die het verband aangeeft tussen de toegevoegde energie en de behaalde snelheid van een massa begint weliswaar nagenoeg lineair, maar vlakt daarna af. De snelheid waar de curve naartoe blijkt te neigen, maar die nooit bereikt wordt is c, de lichtsnelheid in vacuüm – bijna 300 000 km/s.
De lichtsnelheid in vacuüm (meestal kortweg ‘de lichtsnelheid‘) wordt dus beschouwd als de ultieme snelheidslimiet voor alle materiële voorwerpen. Katten hebben een massa en worden dus geacht trager dan c te bewegen. “Lichtdeeltjes” of fotonen hebben geen massa; zij kunnen wel met snelheid c bewegen.

Snelheid in functie van totale energie. De rustmassa van het deeltje levert een constante bijdrage aan de energie, de rest is kinetische energie (energie door beweging). Volgens de klassieke fysica zou de snelheid onbeperkt kunnen toenemen (roze lijn), maar in de praktijk blijkt dat niet zo te zijn: relativiteitstheorie voorspelt dat deeltjes met een rustmassa nooit de snelheid c bereiken (rode lijn). (Bron van de afbeelding: http://www.phys.unsw.edu.au/einsteinlight/jw/module5_equations.htm)
In de context van relativiteitstheorie wordt het bovenstaande meestal als volgt samengevat: massa is snelheidsafhankelijk en neemt toe met de snelheid. Wat wij meestal als ‘massa’ aanduiden is de rustmassa van een voorwerp. (Die term is ook heel toepasselijk bij katten, die wel twintig uur per etmaal rusten.) Enkel als die rustmassa nul is, zoals bij een foton, kan het deeltje met de maximale snelheid, c, bewegen.
Dit wil overigens niet zeggen dat er niets sneller dan het licht zou kunnen bewegen. Daarbij wil ik het niet eens hebben over tachyonen. (Dat zijn hypothetische deeltjes die geen normale massa hebben en die wel sneller dan c zouden kunnen bewegen. Dit zou geïnterpreteerd kunnen worden als deeltjes die terugreizen in de tijd, maar dat is dus weer een heel ander verhaal.) Er is een veel voor de hand liggendere manier om sneller te gaan dan het licht: door het licht te vertragen! In nieuwe (meta-)materialen kan men de snelheid van het licht drastisch verlagen, een fenomeen dat “slow light” of “traag licht” genoemd wordt.
Enkel in een absoluut vacuüm beweegt het licht aan de snelheid c. In eender welk medium (met brekengsindex n > 1) beweegt het licht met een lagere snelheid, c‘ (c‘ = c / n < c). Door andere deeltjes te versnellen tot een snelheid hoger dan c‘ (maar niet hoger dan c, want dat is – voor zo ver bekend – onmogelijk), kunnen ze het licht in dat medium dus inhalen! Dit is niet enkel een theoretische mogelijkheid, maar kan ook experimenteel worden aangetoond. Wanneer een vliegtuig sneller vliegt dan de geluidssnelheid in lucht, ontstaat er een schokgolf, die wij horen als een knal. Iets soortgelijks gebeurt er wanneer geladen deeltjes de lichtsnelheid in het medium overschrijden: er komt dan straling vrij (Cherenkov-straling).
Licht is het oudste en bekendste voorbeeld van de golf-deeltjes-dualiteit uit de kwantummechanica. Afhankelijk van het vraagstuk, kan het handiger zijn om licht als een golf- of als deeltjesfenomeen te beschrijven. Nu lijkt er een tegenspraak te zitten tussen beide beschrijvingen:
- Als je het licht als een golf beschouwt, zoals in de klassieke optica, kan het licht trager gaan dan c. Dit is te begrijpen in termen van elektrische polarisatie van het medium: de gepolariseerde materie gaat daarbij zelf licht uitzenden, dat interfereert met het oorspronkelijke licht en zo in een vertraagde lichtgolf resulteert.
- Als je het licht echter als deeltjes beschouwt (fotonen), zoals in de kwantummechanica, en de uitleg over relativistische massa’s herleest, dan zou je kunnen concluderen dat fotonen enkel met de snelheid c kunnen bewegen, niet trager. Of krijgen fotonen plots toch een massa als ze door medium bewegen, maar hoe kan dat dan?
Om deze schijnbare tegenstrijdigheid te ontwarren, moet je opnieuw een ‘holistisch’ standpunt innemen – net als bij de koffiedruppels die op het oppervlak van koffie stuiteren en net als bij de bult door de kat onder het dekbed.
In dit geval betekent dit dat je de interactie tussen het foton en de deeltjes in het medium van naderbij moet bekijken. Het is onmogelijk om dit volledig algemeen te doen. Veel hangt af van welk medium het is (Is het een gas, een vloeistof, of een vaste stof?) en van het type foton (Hoeveel energie heeft het?) Om het echt goed te doen, heb je een hele brok fysica nodig, inclusief formules. En zelfs als je fysica hebt gestudeerd, blijft het moeilijk om de gedetailleerde, kwantitatieve theorieën terug te brengen tot een kwalitatief totaalplaatje. Toch ga ik een poging wagen om voor één specifiek voorbeeld een heldere uitleg te geven. (Veel dank aan Danny om mee te brainstormen voor volgend stukje.)

Als je de interactie van licht met materie wilt beschrijven heb je een hele brok fysica nodig. Als je wil beschrijven hoe licht interageert met diamant dan is dat weer een heel ander verhaal dan de interactie tussen fotonen en katten.
Om het zo concreet mogelijk te maken ga ik uit van rood licht, met een golflengte van – laat ons zeggen – 650 nm. Daarmee correspondeert een foton met een energie van ongeveer 2 eV. Als medium neem ik mijn favoriete vaste stof: diamant, dat in elk geval transparant is voor rood licht. De bindingslengte van de koolstofatomen in het diamantrooster bedraagt slechts 0,154 nm, duizenden malen kleiner dus dan de ‘afmetingen’ van het foton, nu beschouwd als een golfpakketje met die specifieke golflengte. De handigste manier om de interactie van het foton met de vaste stof te beschrijven is dus niet voor iedere koolstofkern afzonderlijk, maar door het rooster als een geheel te beschouwen. Als je het foton als een energiepakketje beschouwt, kun je zien dat het invallende foton voor een kleine energieverhoging zorgt in een (relatief) groot gebied van het rooster: een proces dat je kunt beschrijven als een (kwantummechanische) excitatie van het rooster. Met deze aangeslagen toestand van het rooster kun je een pseudodeeltje associëren: het polariton.
Het vreemde besluit is dus dat lichtdeeltjes niet trager kunnen dan c, maar lichtgolven wel. Hm, is dit meer dan een semantische afspraak? “Zodra fotonen invallen op een medium, spreek je niet meer van een foton maar van een polariton.” Het lijkt erop dat er meer aan de hand is. Een foton heeft geen massa. Aangezien het polariton een aangeslagen toestand is van het rooster, dat zelf een massa heeft, hoeft het geen verbazing te wekken dat ook het polariton een massa heeft en dus trager gaat dan c.
Vind je die pseudo-deeltjes maar bizar? Denk dan terug aan de kat onder het dekbed! Terwijl de kat onder de deken zit, kun je haar niet zien. Je ziet enkel een bultje dat beweegt, vermoedelijk iets trager dan een vrije kat. Je zou het bultje een pseudodeeltje kunnen noemen: het doet het dekbed op zo’n manier bewegen alsof er een lokale vervorming is, die zich in het vlak van het dekbed kan verplaatsen.

Aan deze kant van de deken zie je de kat, aan de andere kant zie je een vervorming die zich verplaatst. Die bultjes zou je polaritons kunnen noemen.
Toch is er een verschil: de kat bestaat nog, ook al zit ze onder een dekentje, maar als licht zich door een medium beweegt, zouden de fotonen niet langer bestaan – zij gaan volledig op in het nieuw pseudo-deeltje, het polariton. Wanneer het bultje aan het einde van het dekbed komt, komt er gewoon weer een kat te voorschijn. In dit beeld bestaat het bultje niet echt als een onafhankelijk object, de kat en het dekbed wel. Ook wanneer het licht weer overgaat van het medium naar vacuüm, bestaat het weer uit fotonen. Dit wekt de indruk dat ook in het medium de fotonen nog bestonden – net als de kat onder het dekentje. Het lijkt er dus op dat het polariton als pseudo-deeltje slechts dient om het ons makkelijker te maken het hele proces fysisch te beschrijven.
Is het polariton een soort bultje dat niet echt bestaat? Mijn eigen conclusie – op dit ogenblik – neigt eerder naar het omgekeerde: alles wat wij deeltjes noemen zijn pseudo-deeltjes, die ons helpen om fysica te begrijpen. Ook katten en dekens zijn pseudo-objecten, concepten die het ons gemakkelijker maken om over de wereld na te denken en er met andere mensen over te communiceren: “Hang het dekbed eens uit het raam om te verluchten, maar niet de kat!”
Ja, een kat is zelf een soort “bultje”: de kat bestaat vandaag uit heel andere cellen dan die waaruit ze een paar jaar geleden bestond. Toch roepen we haar met dezelfde naam… en luistert ze nog steeds niet. ;-) De deken bestaat uit een eerder toevallig samenraapsel van synthetische of organische vezels, die honderd jaar geleden of honderd jaar in de toekomst wellicht op heel verschillende plaatsen terug te vinden waren/zijn. Zelfs een perfect gladde deken is zo een soort bultje in de wereld; iets dat mensen als één ding zien.
Katten en dekens, fotonen en kristalroosters: geen van alle zijn er echt objectief. Voor golven geldt overigens hetzelfde – mijn punt is hier niet dat de wereld inherent golf-, veld-, of energie-achtig is. Al deze concepten zijn hulpmiddelen voor mensen om de wereld te beschrijven, zaken te (proberen) voorspellen en er iets van te begrijpen. Maar uiteindelijk ‘is’ de wereld er gewoon en dat is nooit tot louter begrijpen te herleiden.
Wetenschap is een uiting van het menselijke verlangen om zoveel mogelijk van de wereld te begrijpen en het scherpe randje aan de wetenschap is dat dat verlangen onmogelijk, zelfs maar in principe, vervuld kan worden. Dat is het bitterzoete koekje dat bij deze holistische kop koffie geserveerd wordt.